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Spatio-Temporal Graph Attention Embedding for Joint Crowd Flow
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Crowd mobility prediction, in particular, forecasting flows at and transitions across different locations, is essential for crowd
analytics and management in spacious environments featured with large gathering. We propose GAEFT, a novel crowd mobility
analytics system based on the multi-task graph attention neural network to forecast crowd flows (inflows/outflows) and
transitions. Specifically, we leverage the collective and sanitized campus Wi-Fi association data provided by our university
information technology service and conduct a relatable case study. Our comprehensive data analysis reveals the important
challenges of sparsity and skewness, as well as the complex spatio-temporal variations within the crowd mobility data.
Therefore, we design a novel spatio-temporal clustering method to group Wi-Fi access points (APs) with similar transition
features, and obtain more regular mobility features for model inputs. We then propose an attention-based graph embedding
design to capture the correlations among the crowd flows and transitions, and jointly predict the AP-level flows as well as
transitions across buildings and clusters through a multi-task formulation. Extensive experimental studies using more than 28
million association records collected during 2020–2021 academic year validate the excellent accuracy of GAEFT in forecasting
dynamic and complex crowd mobility.
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1 INTRODUCTION
Crowd mobility analytitcs have become increasingly important for spacious urban environments featured with
large crowd gathering. The global crowd mobility analytics market is estimated to hit US$1,531 million by
20221. Accurate and proactive crowd analytics can enable various ubiquitous computing applications, such as
event surveillance [21], urban planning [46], epidemic and social analysis [28], recommendation and subsequent
commercial promotions [45]. Especially, during the pandemic of COVID-19 [30], a crowd mobility analytics
1https://www.alliedmarketresearch.com/crowd-analytics-market
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Fig. 1. Illustration of the crowd mobility analytics system applications.

system can monitor and control the crowd distributions at many spacious sites, and subsequently help mitigate
the spread of epidemic diseases.
In this paper, we develop a predictive crowd mobility analytics system to forecast the crowd mobility at

different locations of a target site. As illustrated in Fig. 1, we focus on two important crowd mobility patterns,
crowd transitions (number of people travelling from one location to another) and crowd flows (number of people
entering or leaving a location, referred to as inflows/outflows). This predictive system can assist the relevant
stakeholders (e.g., crowd management and emergency departments) in handling potentially congested areas [1, 2]
and enhancing their preparedness to potentially abnormal crowd distributions [4, 47], such as providing event
alerts, deploying emergency responses, and enforcing social distancing. Using mobile apps or web-based services,
these alerts as well as emergency and social distancing information can reach the public quickly.
As a case study, the predictive crowd mobility analytics system is developed for our university campus using

the Wi-Fi association data collected from the campus network. We note that Wi-Fi access points (APs) have been
ubiquitously deployed on our campus (like many other universities) to provide excellent Internet connection
services for students, faculty, and staff. When users are connected to the Wi-Fi network, their locations can
be approximated by the locations of the APs that their mobile devices are associated with (since the devices
are associated with nearby APs for Internet access). Therefore, Wi-Fi association data can be used to identify
the approximate locations of the end users in real time. This approach of sensing the crowds has the following
two advantages. First, harvesting the Wi-Fi associations is highly automatic and non-intrusive — it leverages
campus network infrastructures, requiring no apps downloaded on the end-user devices. Second, since no
sensitive information (such as user IDs, MAC addresses, or IP addresses) is included in the analysis, our approach
of using passive Wi-Fi association data (routinely collected by the university network services) is much less
privacy intrusive compared to user ID card access records, camera-based [11], and other active Wi-Fi probe-
based approaches [33]. Through partnership with our University Information Technology Services (UITS), our
developed crowd mobility analytics system will assist the university campus management department in timely
response to the future campus reopening and crowd gathering.
Conducting comprehensive crowd mobility analytics of the Wi-Fi data (Sec. 2.2), we have identified data

sparsity and skewness as a major issue in the harvested crowd mobility data, i.e., the majority of the crowd
mobility data (in/out flows and transitions) are recorded at a few locations and in a few time periods. This poses
two major challenges to practical deployment of crowd mobility analytics systems.
(1) Spatio-Temporal Complexity Challenge: Due to end users’ complex daily routines and preferences, the crowd

mobility sparsity and skewness vary spatially and temporally across different campus locations and time
periods. Taking our campus as an example, we show in Fig. 2 the distributions of the inflows, i.e., the
number of people arriving at these labeled locations (campus buildings). We can see that the majority of
the daytime activities (Fig. 2a) concentrate in the center of the campus (due to major academic and dining
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Fig. 2. Total number of inflows at each building on Monday
2021-03-01 (warmer colors represent larger inflows).
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Fig. 3. Variations of transitions from the campus center
(red star) to other locations on Monday 2021-03-01 (warmer
colors represent larger transitions).

activities), while in the evening the majority of crowd inflows are observed in the peripheral areas of the
campus where most of the student residential halls are situated (Fig. 2b). Similar sparsity can be observed
from Fig. 3, from which we can see the highly skewed transitions from the campus center to other campus
locations in the daytime (mainly towards the center of campus in Fig. 3a) and at night (mainly towards
the peripherals of the campus in Fig. 3b). Such sparsity variations across space and time make accurate
modeling and prediction difficult.

(2) Model Learnability Challenge: An even more pressing issue for the crowd mobility analytics is the model
learnability. Conventional deep learning prediction of complex crowd mobility [24, 43, 48] often requires
dense features available within the crowd mobility data, which, however, might not be always valid given
the above sparse and skewed data. Furthermore, the fine-grained crowd mobility analytics often require
space and time discretization of high granularity (e.g., predicting hourly crowd flows under different APs).
It often causes the input features to be even more sparse and skewed, making it highly challenging for the
conventional deep learning models [24, 27, 34, 42, 43, 48] to effectively learn and predict.

To address these challenges, we propose GAEFT, a novel crowd analytics system based on Graph Attention
Embedding neural network and joint crowd Flow-Transition learning. GAEFT aims at jointly predicting two aspects
of the crowd mobility: (i) the crowd transitions, i.e., the transitions across the campus buildings and regions, and
(ii) crowd flows, i.e., the numbers of arrivals and departures, based on the association and disassociation records
from the Wi-Fi APs. Our study makes the following three major contributions:
(1) Comprehensive Crowd Flow and Transition Data Analytics.We have conducted comprehensive studies of the

crowd flows and transitions on campus, which motivate the adoption of a novel spatio-temporal clustering
method to handle data sparsity. Specifically, we have designed a novel affinity propagation clustering
method based on the spatial closeness and temporal transition connectivity across buildings, and group the
APs in different buildings into clusters. The resulting more regular mobility patterns serve as one of the
model inputs, and help mitigate the data sparsity and augment the model learnability of GAEFT.

(2) A Novel Multi-task Learning Framework with Graph Attention Embedding. To further handle the sparsity
within the crowd mobility data, we propose a novel graph attention embedding design which incorporates
the spatio-temporal correlations of the building neighborhoods (clusters) to enhance the GAEFT’s learnability
on crowd flow and transition. To further handle the data sparsity issue of the transition matrix, we generate
two separate embeddings for inflows and outflows, and leverage two separate graph embedding learning
modules to integrate them for the final transition predictions. Within each graph embedding learning
module, we design a novel spatio-temporal multi-head attention mechanism that captures and differentiates
the importance of the spatio-temporal correlations across the crowd flows and transitions. We then jointly

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 187. Publication date: December 2021.



187:4 • Yang et al.

Cluster Graph 
Aggregator

Building Graph 
Aggregator

(b) Crowd Mobility 
Learning

(a) Crowd Mobility 
Processing

Campus Map

Spatio-Temporal 
Clustering

(c) Crowd Mobility 
Prediction

Attentions
Spatio-Temporal 

Attentions
Historical 

Transitions

External
Factor
Vector

Mobile 
Map 

Service

AP-level Flows
Building-Cluster

Transitions

External
Factors

Wi-Fi data

Building-
level Flows

Cluster-
level Flows

Fusion
Assignment 

Fusion

Fig. 4. Information flow of GAEFT: (a) crowdmobility processing; (b) crowdmobility learning; and (c) crowdmobility prediction.

predict the transitions and flows in a multi-task learning paradigm, which has been shown to enhance the
prediction accuracy.

(3) Extensive Real-world Experimental Studies. Collaborating with our university information technology
services (UITS), we conduct extensive experimental studies on the real-world crowd transitions and flows
generated during 2020–2021 academic year (AY). Results from the extensive experimental evaluations
demonstrate that our proposed model achieves higher accuracy in predicting the crowd flows (AP-level) and
transitions (across buildings and clusters) than the state-of-the-art baseline models [24, 27, 34, 42, 43, 48].

System Overview: We illustrate the information flow of GAEFT in Fig. 4, which consists of three phases.
(a) In the Crowd Mobility Processing phase, we collect the Wi-Fi association data and find the crowd flows

(in/outflows based on the associations and disassociations) at different locations covered by the Wi-Fi APs. Using
the campus map, we group the buildings and their APs into clusters based on their closeness in terms of geographic
locations as well as connectivity in terms of crowd transitions. We also collect and process the external factors
(e.g., weather conditions and weekdays/weekends) to assist the mobility prediction. Summarizing the above, we
form the building-level flows, cluster-level flows, and external factor vector as inputs to GAEFT.
(b) In the Crowd Mobility Learning phase, GAEFT considers the target site such as the campus as a network

with buildings or clusters as nodes and crowd transitions between nodes as edges. Based on the network graph
thus formed, GAEFT takes in building/cluster-level flows and extracts the spatial features of the buildings/clusters
using the building and cluster graph aggregators. The extracted cluster-level inflow/outflow embeddings are fused
with the extracted building-level inflow/outflow embeddings using assignment fusion. We further enhance the
extraction of spatio-temporal charateristics of the fused building-level inflow/outflow embeddings by spatio-
temporal attentions. We then combine the building-level inflow/outflow embeddings with external factors as well
as the historical transitions (in the same historical time periods).
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The outputs will be simultaneously mapped towards transitions across the buildings and clusters, as well as
the AP-level flows, through a multi-task learning mechanism. This way, we train GAEFT to learn and predict the
sparse crowd mobility data.

(c) In the Crowd Mobility Prediction phase, given the trained GAEFT model, we predict the transitions and flows
for the crowd management departments and relevant stakeholders. For instance, we can visualize the potential
congestions and crowded spots on the mobile map service, and help inform the management departments and
crowds for potential responses and preparations. Our fine-grained AP-level prediction will also enable localized
crowd control [39] at different campus locations.

Societal Implications: Our campus crowd mobility studies are timely and important for providing guidance
on predictive crowd flow and transition modeling and management. Since the outbreak of COVID-19, more
than 700,000 cases2 have been reported on college campuses in the U.S. by July 2021. Especially given the
growing threats from SARS-COV2 variants [30], many university campuses in North America and Europe
are facing unprecedented challenges in the coming 2021 Fall reopening. Although we use Wi-Fi association
data for our prototype studies here, the insights and models from our study can be extended to other spacious
urban environments (such as shopping malls), and other existing or emerging crowd sensing modalities, such as
leveraging cellular signals [35] and camera tracking [11].
We organize the rest of the paper as follows. We first overview the datasets used, define important concepts,

and present our data analysis and motivations in Sec. 2. Then, we present the detailed core formulation of GAEFT
in Sec. 3 and the model integration and multi-task learning in Sec. 4. Afterwards, we present the experimental
evaluation of GAEFT in Sec. 5. We then review the related work in Sec. 6, discuss the deployment of GAEFT in
Sec. 7, and finally conclude in Sec. 8.

2 SYSTEM OVERVIEW, DATASETS & IMPORTANT CONCEPTS
We first present the Wi-Fi association dataset and other external factors considered in GAEFT in Sec. 2.1, followed
by the definitions of important concepts and motivations in Sec. 2.2.

2.1 Dataset Overview
We have collaborated with our university information technology services to collect Wi-Fi association data from
the campus network. To summarize, we have collected 28,477,044 Wi-Fi association records in total from 1,257
APs during 2020-10-11 to 2020-11-10 (Fall) and 2021-02-02 to 2021-04-10 (Spring). Specifically, we use a server that
periodically (on a hourly basis) retrieves AP association and dissociation events from all the campus APs using
standard network protocols [9]. Each Wi-Fi association record contains the following key attributes: user IDs
(encrypted and sanitized), association timestamp and duration, and the MAC address of the AP for the association.
Table 1 shows an example of a Wi-Fi association record. The user IDs have been encrypted and randomized
before our data analysis for privacy protection. A user might have multiple mobile devices, such as a smartphone
and a laptop, and these devices might associate with the APs under the same ID. By mapping multiple devices
towards the single user, we can differentiate the users in the crowds. The IDs are discarded immediately after the
mapping and aggregation. Based on the mapped IDs, we have identified 22,298 users in total who have association
activities within our collected data. By examining the association records of two consecutive APs at two buildings
where the users have visited, we infer the collective (aggregate) transitions across different campus buildings.

Table 1. An example of a Wi-Fi asssociation record.
User IDs Association Timestamp (yyyy-MM-dd HH:mm:ss) Session Duration MAC of AP

Anonymized 2020-11-10 13:00:00 3 min 5 sec 12-digit hexidecimal number
2https://www.nytimes.com/interactive/2021/us/college-covid-tracker.html
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Fig. 5. (a) Time series of transitions from the dining hall to the student center; (b) percentage of sparsity in hourly total
transitions.

In addition, we have considered other external factors such as weather conditions and weekday time which
influence the crowd mobility. Specifically, we collect the temperature and hourly precipitation from the open
data sources3. We collect 7,655 records of weather conditions for the period of 2020-10 to 2021-05 (including
temperature and precipitation). Thenwe concatenate the hourly temperature (from 0 to 85◦ F), hourly precipitation
(from 0 to 0.29 inches), and indicator of whether it is a weekday (denoted as 1) or not (denoted as 0), and form the
external factor vector input, denoted as e, for GAEFT. For instance, we have e = [10◦F, 0.29 inch, 1] for a certain
time interval. We then normalize each dimension in e using min-max normalization.

2.2 Important Concepts and Motivations
We define the following important concepts and motivate our data-driven model designs.

Time Discretization. With the collective Wi-Fi association and disassociation records, we are able to capture
the mobility (transitions and flows) at different campus locations with Wi-Fi AP coverage. For ease of modeling
transitions/flows, we first discretize the time domain into equal-duration slots or intervals (1 hour in our study),
each of which is indexed by 𝑘 . In our data analytics, we observe that users’ transition time may cover more than
one time intervals. For instance, a user disassociated from an AP in a building at, say, 11:55am, then traveled for
15min and connected to an AP in another building at 12:10pm. Therefore, we investigate the transitions as well
as flows for every two consecutive intervals as described below.

Crowd Flows. Given the Wi-Fi associations and disassociations at the campus Wi-Fi APs, we first define the
crowd flows for GAEFT’s formulation. Specifically, based on the encrypted user IDs, we map the Wi-Fi associations
and disassociations at all 𝑁 (A) Wi-Fi APs (“A” for APs) towards the numbers of user arrivals (inflows) and
departures (outflows) at the time interval 𝑘 , i.e., the AP-level crowd flows F(A)

𝑘
∈ R𝑁 (A)×2. Note that we let

the elements at F(A)
𝑘

[:, 1] be the AP-level inflows and the ones at F(A)
𝑘

[:, 2] be the AP-level outflows. Based on
the AP-level crowd flow, we can aggregate the APs within the same building on the campus, and obtain the
building-level crowd flows for all 𝑁 (𝐵) buildings (“B” for buildings), denoted as F(B)

𝑘
∈ R𝑁 (B)×2.

Crowd Transitions. Based on the building-level crowd flows, we then find the building-to-building transition
matrix T𝑘 ∈ R𝑁 (B)×𝑁 (B) , where each element T𝑘 [𝑏,𝑏 ′] (𝑏, 𝑏 ′ ∈ {1, . . . , 𝑁 (B) }) represents the aggregate number
of clients who depart from buildings 𝑏 in the time interval 𝑘 to 𝑏 ′ in either the interval 𝑘 or (𝑘 + 1) (without
connecting to an AP in a third building in between). Based on our transition time analysis during 2020 Fall and
2021 Spring, we note that over 85% of the transitions last shorter than 2h. Therefore, we consider 1h for each time
interval, and take into account the transitions which span at most two consecutive time intervals (𝑘 and 𝑘 + 1).
3api.weather.com
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Data Sparsity and Skewness. Through our data analysis of the Wi-Fi-based crowd mobility data, we have
identified and quantified the sparsity and skewness as follows. We first show an example of the transitions from
a dining hall to the student center within a week in Fig. 5a. The highly sparse, irregular, and dynamic transitions
make it difficult to model and predict. We further show in Fig. 5b the temporal sparsity in the hourly transition
matrices across buildings. We find the average percentage of sparsity in the transition matrices of all days. While
the sparsity drops during the daytime due to more crowd mobility recorded, we can still observe significant zeros
(over 90%) from the transition matrices, which makes it highly challenging to model and predict.

Spatio-Temporal Clustering to Mitigate Sparsity. Motivated by the above observations, we group the
buildings on campus into different clusters based on the buildings’ spatio-temporal mobility patterns. The
buildings in a cluster form a region with similar mobility features. The periodicity and regularity of the transition
patterns between buildings and clusters becomes clearer and thus potentially more learnable.
Our goal is to cluster the buildings into regions with similar spatio-temporal mobility patterns. To this end,

we design a similarity score to accommodate two important perspectives: (i) the spatial similarity in terms of
geographic distances, and (ii) the temporal similarity in terms of historical transitions. For (i), we consider geo-
distance (km) between two buildings 𝑏 and 𝑏 ′, denoted as 𝑔[𝑏, 𝑏 ′]. For (ii), we conduct the min-max normalization
upon the transition matrix T𝑘 to obtain T𝑘 which is of similar magnitude as 𝑔[𝑏,𝑏 ′]. We then define diff[𝑏, 𝑏 ′] as
the squared average difference of all normalized transitions starting from and ending at buildings 𝑏 and 𝑏 ′, i.e.,

diff[𝑏, 𝑏 ′] = 1
𝑁 (B)

∑︁
𝑘

𝑁 (B)∑︁
𝑏′′

(
T𝑘 [𝑏,𝑏 ′′] − T𝑘 [𝑏 ′, 𝑏 ′′]

)2
+ 1
𝑁 (B)

∑︁
𝑘

𝑁 (B)∑︁
𝑏′′

(
T𝑘 [𝑏 ′′, 𝑏] − T𝑘 [𝑏 ′′, 𝑏 ′]

)2
. (1)

Our similarity score between two buildings, 𝑏 and 𝑏 ′, then becomes

sim[𝑏, 𝑏 ′] = −𝛽 · 𝑔[𝑏, 𝑏 ′] − diff[𝑏,𝑏 ′], (2)

where 𝛽 is a hyperparameter. We then adopt the Affinity Propagation clustering [6] to cluster the buildings,
which requires no explicit input of the number of clusters. We illustrate in Fig. 6 the resulting 21 clusters from
128 selected buildings based on all the transitions during 2020–2021 AY. We further show the resulting hourly
transitions in Fig. 7 from the dining hall to one cluster, and we can observe more regular patterns than in Fig. 5a.

Cluster-level Flows and Building-Cluster Transitions. Given the 𝑁 (C) clusters generated (“C” for clusters),
we further aggregate and find the cluster-level flows at all clusters at the time interval 𝑘 , F(C)

𝑘
∈ R𝑁 (C)×2, as the

numbers of association records (inflow) or dissociation records (outflow) in all buildings of each cluster. Let 𝑐 be the
index of a cluster. Based on the formed clusters, we find the building-cluster transition matrix T𝑘 ∈ R𝑁 (B)×𝑁 (C)×2

at the time interval 𝑘 , where T𝑘 [𝑏, 𝑐, 1] represents the number of transitions from a building 𝑏 to a cluster 𝑐 , and
T𝑘 [𝑏, 𝑐, 2] represents the number of transitions from a cluster 𝑐 to a building 𝑏.
Based on the generated building clusters, we can obtain more regular crowd flow/transition patterns, mitigate

the adversarial effects of the sparse and skewed crowd mobility data, and enhance the learnability of GAEFT.
Furthermore, the knowledge of transitions between buildings and clusters consisting of multiple other buildings
will help the relevant stakeholders to handle potentially congested areas for the spacious site management.

Problem Statement. Based on the processed data, we present the research problem for GAEFT as follows.
Given the historical 𝐾 building-level flows and cluster-level flows, {F(B)

𝑘
} and {F(C)

𝑘
}, 𝑘 ∈ {1, 2, . . . , 𝐾}, the campus

map and the graph network formed by the buildings, and the external factors e, GAEFT simultaneously predicts
the building-cluster transitions, T̂ , and the AP-level flows, F̂(A) , at the next target time interval.
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3 CORE FORMULATION OF GAEFT

We first overview the core model in Sec. 3.1, and present the designs of graph aggregator in Sec. 3.2. After that,
we present how to fuse the cluster-level and building-level inflow/outflow embeddings in Sec. 3.3, followed by
the spatio-temporal attention mechanisms in Sec. 3.4.

3.1 Overview of GAEFT Architecture
Fig. 8 overviews the core architecture of GAEFT. GAEFT consists of two parallel and connected pipelines in jointly
learning the inflows (upper half in Fig. 8) and outflows (lower half in Fig. 8). The key idea of GAEFT is similar
to the matrix decomposition where a sparse matrix is factorized into two dense one which preserve the most
important information from the sparse inputs [19], and hence enhance the model learnability upon the sparse
mobility data. We will present the following four major components.

Building Graph 
Aggregator (Sec. 3.2)

Building Graph 
Aggregator (Sec. 3.2)

Cluster Graph 
Aggregator (Sec. 3.2)

Cluster Graph 
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Fig. 8. Overview of the GAEFT’s architecture, which consists of four phases.

(a) Graph Aggregation: GAEFT takes in the building-level flows F(B)
𝑘

and cluster-level flows F(C)
𝑘

, where F(B)
𝑘

[:, 1]
and F(C)

𝑘
[:, 1] correspond to inflows, and F(B)

𝑘
[:, 2] and F(C)

𝑘
[:, 2] correspond to outflows. Taking the inflows in

the upper half of Fig. 8 as an example, we first use graph aggregators (Sec. 3.2) to capture the local feature
correlations across the neighboring nodes (i.e., buildings or clusters). Specifically, given the inputs F(B)

𝑘
[:, 1] and

F(C)
𝑘

[:, 1], GAEFT generates the building-level inflow embeddings, H(B) , and cluster-level inflow embeddings, H(C) ,
respectively based on the building graph aggregator and cluster graph aggregator.
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(b) Assignment Fusion: We then incorporate the H(C) and H(B) through assignment fusion (Sec. 3.3) in order to
fuse the embedded features from the buildings and clusters. This way, we obtain the H, i.e., the building-level
inflow embeddings.

(c) Spatial and Temporal Attentions: Given H, we then adopt attention mechanisms (Sec. 3.4) in terms of spatial
and temporal attentions for H to further capture the local and global spatial correlations across the close and
distant buildings/clusters as well as the temporal correlations between the historical and the predicted time
intervals. We have designed gated fusion to incorporate the spatial and temporal attentions.

(d) Integration with External Factors & Historical Transitions: The generated outputs after the attentions will be
fused with e, the external factors such as weather conditions and weekdays/weekends (Sec. 4.1), to assist GAEFT
in learning the complex crowd mobility environments. The resulting embeddings comprise two parts: H̃(T) for
transition prediction, and H̃(F) for final AP-level inflow prediction (̂F(A) [:, 1]). GAEFT fuse the embeddings from
upper and lower halves, and merge with the transitions in the same historical time interval (Sec. 4.1), denoted as
T𝑘∗ , and finally generate the final building-cluster transition prediction T̂ .
The aforementioned process applies to the lower half in processing the outflows, which will lead to the

predicted AP-level outflows, F̂(A) [:, 2]. We further discuss the details of each component in the following sections.

3.2 Graph Aggregation for Spatial Feature Learning
Considering the correlations as edges connecting different campus locations as nodes, we formulate the locations
into a graph and introduce the graph aggregation to capture the spatial features of each location, i.e., a building
or a cluster. Here we will formulate the spatial characteristics of a node as the node embeddings, which can be
generated by aggregating the spatial features of its neighbor nodes, i.e., the sum of features of its neighbor nodes
weighted by the correlations between them. As the inflows and outflows of each building or cluster encode the
crowd mobility patterns in its neighborhood, we adopt the in/outflows as the node features for our formulation.
To generate the building/cluster-level inflow/outflow embeddings, we first design two graph aggregators

respectively for buildings and clusters to capture the inherent spatial building-to-building and cluster-to-cluster
correlations from the inputs. In practice, the features of each node are more correlated with those of its neighboring
nodes than others that are far apart [36]. Therefore, we first design an aggregation strategy for feature extraction
based on their mutual geospatial distances.
Specifically, we consider a building graph G

(B) that consists of 𝑁 (B) buildings as nodes and their geospatial
distances as edges. Similarly, we use the centroid points of clusters as nodes and the mutual geospatial distances
between the centroid points as edges, and form the cluster graph G

(C) . Taking building-level inflows as an
example, we define 𝑑 [𝑏,𝑏 ′] = 1

𝑔 [𝑏,𝑏′ ] (km
−1), i.e., the inverse geographic distance between buildings 𝑏 and 𝑏 ′; we

set 𝑑 [𝑏, 𝑏 ′] = 0 if 𝑏 = 𝑏 ′. Then the aggregated flow features at the building 𝑏, denoted by F
(B)
𝑘 [𝑏] ∈ R1, is given

by the weighted sum of the inflows from other buildings, F(B)
𝑘

[𝑏 ′, 1] ∈ R1, i.e.,

F
(B)
𝑘 [𝑏] =

𝑁 (B)∑︁
𝑏′

𝑑 [𝑏,𝑏 ′] · F(B)
𝑘

[𝑏 ′, 1]∑𝑁 (B)
𝑏′ 𝑑 [𝑏,𝑏 ′]

. (3)

In other words, the nodes that are closer to each other have a higher𝑑 [𝑏,𝑏 ′] and subsequently stronger correlations
in the resulting embeddings. Eq. (3) applies to outflows (resulting in F′

(B)
𝑘 [𝑏]), and we can similarly formulate the

aggregated flow features for the cluster-level flows (replacing “B” with “C”).
Given above, F(B)𝑘 [𝑏] becomes the aggregation of the crowd flow features in the neighborhood of a node. Then

we incorporate the original flow feature, F(B)
𝑘

[𝑏, 1], of building 𝑏 for a comprehensive representation of building
𝑏’s inflow embeddings. Specifically, the building-level inflow embeddings of building 𝑏, H(B)

𝑘
[𝑏] ∈ R𝑤 , will be
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Fig. 9. Illustration of building
graph aggregator.
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Fig. 10. Illustration of assignment fusion
from clusters to buildings.

Fig. 11. Daily average number of tran-
sitions from an academic building (red
star) to other buildings (2020-10-22 to
2020-11-10).

given by

H(B)
𝑘

[𝑏] = ReLu
((
F(B)
𝑘

[𝑏, 1]
n
F
(B)
𝑘 [𝑏]

)
·W

)
, (4)

where W ∈ R2×𝑤 is a learnable parameter matrix of the aggregator, 𝑤 is the size of building-level inflow
embeddings, and

f
is concatenation operation. We then use H(B) ∈ R𝐾×𝑁 (B)×𝑤 to represent the inflow embeddings

at all buildings during all 𝐾 intervals. Similarly, we obtain H′(B) , H(C) , and H′(C) as the building-level outflow
embeddings, cluster-level inflow embeddings, and cluster-level outflow embeddings, respectively.

Fig. 9 illustrates an example of our aggregation strategy to extract features of building𝑏1 based on its correlations
with other peers 𝑏2, 𝑏3, and 𝑏4 (denoted as 𝑑 [𝑏1, 𝑏2], 𝑑 [𝑏1, 𝑏3], and 𝑑 [𝑏1, 𝑏4]). Given H(B)

𝑘
[1] based on Eq. (3), we

concatenate the flow features F(B)
𝑘

[1, 1] at 𝑏1 using Eq. (4), and form a comprehensive representation for the later
assignment fusion.

3.3 Assignment Fusion between Embeddings of Cluster and Building
The cluster-level inflow and outflow embeddings, H(C) and H′(C) , obtained from the graph aggregator contain
the spatial features of the cluster that consists of multiple buildings, and hence have inherent correlations with
the building-level inflow/outflow embeddings, H(B) and H′(B) . We can leverage such inherent correlations to
design a fusion mechanism in order to further reconstruct the crowd flows and transitions. This way, we can
enhance the model learnability and alleviate the impacts from the input data sparsity.

To this end, we design an assignment fusion mechanism to merge the cluster-level inflow/outflow embeddings
into the building-level inflow/outflow embeddings. Specifically, taking the building-level inflow embeddings as
an example, we map the total 𝑁 (C) cluster-level inflow embeddings, H(C)

𝑘
, to the the total 𝑁 (B) buildings via a

trainable indicator matrix I. Here the embeddings of each cluster are assigned to the buildings only in this cluster.
Then we add the mapped cluster-level inflow embeddings to the building-level inflow embeddings, H(B)

𝑘
, i.e.,

H𝑘 = H(B)
𝑘

+ I · H(C)
𝑘
, (5)

where I ∈ R𝑁 (B)×𝑁 (C) is a trainable indicator matrix representing which cluster a building should be mapped to,
i.e.,

I[𝑏, 𝑐] =
{
w[𝑏], if a building 𝑏 should be mapped to a cluster 𝑐;
0, otherwise,

(6)
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where w =
[
w[1], ...,w[𝑏], ...,w[𝑁 (B) ]

]
∈ R𝑁 (B) represents the vector of trainable parameters. We note that the

positive (negative) value of w[𝑏] represents the positive (negative) correlations between building 𝑏 and cluster 𝑐
if the building 𝑏 is in the cluster 𝑐 . GAEFT’s training will find the values of w and determine the correlations. This
way, GAEFT will leverage different weights to characterize how the cluster-level and building-level inflow/outflow
embeddings are correlated, and hence help identify their correlations for further model learning.

Fig. 10 illustrates an example of two clusters 𝑐1 and 𝑐2, and the respective buildings within each of them. Given
these, our assignment fusion will aim to learn the mapping weights w such that the embeddings of 𝑐1 will be
only mapped to 𝑏1 and 𝑏2, and similarly the embeddings of 𝑐2 will be mapped towards 𝑏3 and 𝑏4.

The resulting merged building-level inflow embeddings at all buildings during all time intervals, H, become

H ∈ R𝐾×𝑁 (B)×𝑤 =

{
H1 [1], . . . ,H𝑘 [𝑏], . . . ,H𝐾 [𝑁 (B) ]

}
. (7)

Similarly, we can obtain the merged building-level outflow embeddings, H′ ∈ R𝐾×𝑁 (B)×𝑤 .

3.4 Spatio-Temporal Attention Mechanisms and Their Fusion
With the merged building-level inflow and outflow embeddings, H and H′, we then add two masks in terms of
spatial and temporal attentions to enhance the spatio-temporal learnability of GAEFT.

3.4.1 Spatial Attention. We note that the graph aggregator described in Eq. (3) focuses on the local correlations
among the buildings which are close to each other in terms of geo-distances. However, there still exist crowd
transitions that span across buildings which are far apart due to the specific commute routines or preferences of
crowds. For instance, as illustrated in Fig. 11, we can notice the crowd transitions from an academic building to
another building that is distant away. Simply using the graph aggregators may likely neglect such transitions and
the inherent correlations. Therefore, it is essential to incorporate and differentiate such multi-level (local and
global) mobility trends of crowd mobility to enhance the model learnability.
To this end, we propose a multi-head spatial attention mask [40] on the building-level inflow and outflow

embeddings, i.e., H𝑘 ∈ R𝑁 (B)×𝑤 =

{
H𝑘 [1], . . . ,H𝑘 [𝑁 (B) ]

}
and H

′
𝑘 ∈ R𝑁 (B)×𝑤 =

{
H

′
𝑘 [1], . . . ,H

′
𝑘 [𝑁 (B) ]

}
, at

each time interval 𝑘 . We let Sp label the terms that are related to spatial attention. For the 𝑚-th attention

head (𝑚 ∈ {1, . . . , 𝑀}) for the building 𝑏 during each time interval 𝑘 , we first obtain a query matrix, q(Sp)
𝑘,𝑚

, by
concatenating the building-level inflow/outflow embeddings H𝑘 and H

′
𝑘 , i.e.,

q(Sp)
𝑘,𝑚

= tanh
(
Q(Sp)
𝑚 · Flatten

(
H𝑘

n
H

′
𝑘

))
, (8)

where Q(Sp)
𝑚 ∈ R𝑤/𝑀×2𝑁 (B)𝑤 is a trainable parameter matrix and

f
is the concatenation operation. We generate

the query matrices from flattened concatenation of building-level inflow/outflow embeddings, H𝑘
f
H

′
𝑘 to account

for their similarities in terms of embedded flow patterns.
Then we find the key matrices, x(Sp)

𝑘,𝑚
[𝑏] and x(Sp)′

𝑘,𝑚
[𝑏], for each building 𝑏 and each interval 𝑘 , which are

respectively generated by the building-level inflow and outflow embeddings, H𝑘 [𝑏] and H
′
𝑘 [𝑏] ∈ R𝑤 . Taking

building-level inflow embeddings as an example, we have

x(Sp)
𝑘,𝑚

[𝑏] = tanh
(
X(Sp)
𝑚 · H𝑘 [𝑏]

)
, (9)

where X(Sp)
𝑚 ∈ R𝑤/𝑀×𝑤 is a trainable parameter matrix.

By comparing the key matrix, x(Sp)
𝑘,𝑚

[𝑏], with query matrix, q(Sp)
𝑘,𝑚

, through an inner product, we can obtain the
spatial attention weight of building-level inflow embeddings 𝜶 (Sp)

𝑘,𝑚
[𝑏] to characterize the mobility trend between
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a building 𝑏 and others, i.e.,

𝜶
(Sp)
𝑘,𝑚

[𝑏] = sigmoid
©«
q(Sp)
𝑘,𝑚

·
(
x(Sp)
𝑘,𝑚

[𝑏]
)⊺√︁

𝑤/𝑀

ª®®¬ . (10)

The attention weights of all the buildings, 𝜶 (Sp)
𝑘,𝑚

=

{
𝜶

(Sp)
𝑘,𝑚

[1], . . . ,𝜶 (Sp)
𝑘,𝑚

[𝑁 (B) ]
}
, form 𝜶

(Sp)
𝑘,𝑚

∈ R𝑁 (B) , which

encodes the mobility trend of the inflows. Similarly, we can obtain 𝜶
(Sp)′
𝑘,𝑚

for the mobility trend of the outflows.
We then generate the value matrices for building-level inflow embeddings, v(Sp)

𝑘,𝑚
[𝑏], by

v(Sp)
𝑘,𝑚

[𝑏] = tanh
(
V(Sp)
𝑚 · H𝑘 [𝑏]

)
, (11)

where V(Sp)
𝑚 ∈ R𝑤/𝑀×𝑤 is a trainable parameter matrix (similarly for outflow). Based on Eqs. (10) and (11), we

generate the output of spatial attention mechanisms for the inflow embeddings of building 𝑏 at time interval 𝑘 ,
A(Sp)
𝑘

[𝑏] ∈ R𝑤 , by concatenating weighted value matrices for all𝑀 attention heads:

A(Sp)
𝑘

[𝑏] =
𝑀n

𝑚

𝜶
(Sp)
𝑘,𝑚

[𝑏] · v(Sp)
𝑘,𝑚

[𝑏] . (12)

We finally form the spatial attention output for inflows (similarly for outflows), denoted as A(Sp) ∈ R𝐾×𝑁 (B)×𝑤 ,
for all buildings and time intervals as, i.e.,

A(Sp) =
{
A(Sp)
1 [1], . . . ,A(Sp)

𝑘
[𝑏], . . . ,A(Sp)

𝐾
[𝑁 (B) ]

}
. (13)

3.4.2 Temporal Attention. To further capture the temporal correlations between the crowd flows at different
time intervals, we design a multi-head temporal attention mechanism. Let Tp be the symbol indicating the terms
within temporal attention. For the 𝑝-th output of the total 𝑃 attention heads for historical time interval 𝑘 at
building 𝑏, we generate the query matrix, q(Tp)

𝑏,𝑝
, by concatenating the inflow/outflow embeddings of a building 𝑏

for all historical 𝐾 time intervals, H[𝑏] ∈ R𝐾×𝑤 =

{
H1 [𝑏], . . . ,H𝑘 [𝑏]

}
and H

′[𝑏] ∈ R𝐾×𝑤 =

{
H

′
1 [𝑏], . . . ,H

′
𝑘 [𝑏]

}
,

i.e.,

q(Tp)
𝑏,𝑝

= tanh
(
Q(Tp)
𝑝 · Flatten

(
H[𝑏]

n
H

′[𝑏]
))
, (14)

where Q(Tp)
𝑝 ∈ R𝑤/𝑃×2𝐾𝑤 is a trainable parameter matrix.

We focus on temporal attention for the building-level inflow embeddings as follows. Following the same
manner as spatial attention mechanism, we generate the key matrices x(Tp)

𝑘,𝑝
[𝑏], attention weights 𝜶 (Tp)

𝑘,𝑝
[𝑏], and

value matrices v(Tp)
𝑘,𝑝

[𝑏] by

x(Tp)
𝑘,𝑝

[𝑏] = tanh
(
X(Tp)
𝑝 · H𝑘 [𝑏]

)
,𝜶

(Tp)
𝑘,𝑝

[𝑏] = sigmoid
©«
q(Tp)
𝑏,𝑝

·
(
x(Tp)
𝑘,𝑝

[𝑏]
)⊺√︁

𝑤/𝑃

ª®®¬ ,v
(Tp)
𝑘,𝑝

[𝑏] = tanh
(
V(Tp)
𝑝 · H𝑘 [𝑏]

)
,

(15)
where X(Tp)

𝑝 ∈ R𝑤/𝑃×𝑤 and V(Tp)
𝑝 ∈ R𝑤/𝑃×𝑤 are the corresponding learnable parameter matrices. The attention

weights, 𝜶 (Tp)
𝑘,𝑝

, represent the importance of the building-level inflow embeddings of time interval 𝑘 in all 𝐾
historical time intervals, and the higher values represent the higher correlation between time interval 𝑘 and
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the future time interval. Then with the concatenation of weighted value matrices for all 𝑃 heads, the temporal
attention output for the inflow embeddings of building 𝑏, A(Tp)

𝑘
[𝑏] ∈ R𝑤 , becomes

A(Tp)
𝑘

[𝑏] =
𝑃n

𝑝

𝜶
(Tp)
𝑘,𝑝

[𝑏] · v(Tp)
𝑘,𝑝

[𝑏] . (16)

We finally have the output, denoted as A(Tp) ∈ R𝐾×𝑁 (B)×𝑤 , for all buildings at all time intervals,

A(Tp) =
{
A(Tp)
1 [1], . . . ,A(Tp)

𝑘
[𝑏], . . . ,A(Tp)

𝐾
[𝑁 (B) ]

}
. (17)

3.4.3 Gated Fusion. Given the outputs of the spatial and temporal attentions for building-level inflow embeddings,
i.e., A(Sp) ∈ R𝐾×𝑁 (B)×𝑤 and A(Tp) ∈ R𝐾×𝑁 (B)×𝑤 , we further fuse and add them into the previous building-level
inflow embeddings, H ∈ R𝐾×𝑁 (B)×𝑤 in Eq. (7). Note that the resulting spatial and temporal attentions may
have different weights for different buildings and different time intervals. Therefore, we employ a gated fusion
mechanism to further fuse the outputs from the two attention mechanisms and obtain the merged attention
output A(S) ∈ R𝐾×𝑁 (B)×𝑤 , i.e.,

A(S) = S ◦ A(Sp) + (1 − S) ◦ A(Tp) , (18)
where ◦ represents the element-wise product operation, and 1 ∈ R𝐾×𝑁 (B)×𝑤 is a matrix where all entries are 1.
Here S ∈ R𝐾×𝑁 (B)×𝑤 is the weight matrix representing the relative importance of a spatial attention mask for the
inflow/outflow embeddings of each building at each time interval, i.e.,

S = sigmoid
(
A(Sp) ·W(Sp) + A(Tp) ·W(Tp) + b(S)

)
, (19)

where matrices W(Sp) ∈ R𝑤×𝑤 , W(Tp) ∈ R𝑤×𝑤 , and b(S) ∈ R𝑤 are learnable parameter matrices. Here we adopt a
sigmoid activation function to enforce the value of the weight matrix to fall within the range of [0, 1].

We then merge the A(S) with the building-level inflow embeddings H that is returned from Eq. (7), and obtain
the building-level inflow embeddings at the future time interval, A ∈ R𝑁 (B)×𝑤 , through a Dense layer, i.e.,

A = Dense
(
H + A(S)

)
. (20)

4 MODEL INTEGRATION & MULTI-TASK LEARNING
Given the building-level inflow/outflow embeddings, A and A

′ from above, we integrate external factors and
historical transitions in Sec. 4.1. Then we detail the final predictions of building-cluster transitions and AP-level
flows as well as the multi-task learning modeling in Sec. 4.2.

4.1 Integrating External Factors & Historical Transitions
4.1.1 External Factors. As illustrated in Fig. 12, given the vector e ∈ R𝑙𝑒 formed by 𝑙𝑒 external factors in total, we
first adopt two consecutive Dense layers followed by the tanh activation function to generate the hidden state of
the external factors, denoted as h(e) ∈ R𝑙 ′𝑒 , i.e.,

h(e) = tanh (Dense(Dense(e))) . (21)

Then we will reshape the output h(e) respectively towards the transitions and flows. Specifically, for transition
prediction, the output dimension of Eq. (21) is set 𝑙 ′𝑒 = 𝑁 (B) ·𝑤 , and after the reshape operation we will have the
2-D tensor h(T) ∈ R𝑁 (B)×𝑤 . Recall that we have the building-level inflow embeddingsA obtained from Eq. (20), and
we will fuse A with h(T) , i.e., H̃(T) ∈ R𝑁 (B)×𝑤 = A + h(T) , and obtain the final building-level inflow embeddiings
H̃(T) for transition prediction.
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Fig. 12. Illustration of incorporating external factors e into building-level inflow embeddings A.

Similarly, for the flow prediction, we set 𝑙 ′𝑒 = 𝑤2 for ease of the reshape operation, and multiply A with h(F) to
obtain the final building-level inflow embeddings H̃(F) ∈ R𝑁 (B)×𝑤 for flow prediction. These designs apply the
same for the building-level outflow embeddings and subsequent predictions (H̃′(T) and H̃′(F) ).

4.1.2 Historical Transitions. We also observe from our data analytics that the number of transitions at a time
interval 𝑘 is highly similar to those transitions in the same historical time intervals (e.g., the same 8:00–9:00am
on the day before). Therefore, we incorporate building-cluster transitions at the historical time interval, T𝑘∗ ∈
R𝑁

(B)×𝑁 (C)×2, in our model design (as illustrated in Fig. 8), where 𝑘∗ is set as the same time interval as the future
time interval on one day ago. We adopt 3 layers of 2D convolutional neural network (Conv2D) to extract the
hidden feature of historical building-cluster transitions at time interval 𝑘∗, denoted by H(His)

𝑘∗ ∈ R𝑁 (B)×𝑁 (C)×2.
Specifically, we have

H(His)
𝑘∗ = ReLu (Conv2D (Conv2D (Conv2D (T𝑘∗ )))) , (22)

where we adopt the zero padding for each convolutional layer and set the output channel size for the last layer
as 2. We use the ReLu activation function to ensure the non-negative output values. Then the extracted hidden
features, H(His)

𝑘∗ , are fused into the transition matrix generated by the building-level inflow/outflow embeddings
to return the final prediction (elaborated in Sec. 4.2).

4.2 Predicting Building-Cluster Transitions and AP-level Flows
4.2.1 Building-Cluster Transitions. Recall that we obtain the building-level inflow/outflow embeddings, H̃(T) ∈
R𝑁

(B)×𝑤 and H̃′(T) ∈ R𝑁 (B)×𝑤 , based on the integration of external factors for the transition prediction. We first
find the sum of the H̃(T) and H̃′(T) of buildings that are in the same cluster to obtain the cluster-level inflow and
outflow embeddings, H̃(C) ∈ R𝑁 (C)×𝑤 and H̃(C)′ ∈ R𝑁 (C)×𝑤 , respectively, i.e.,

H̃(C) [𝑐] =
∑︁
𝑏⊆𝑐

H̃(T) [𝑏], H̃′(C) [𝑐] =
∑︁
𝑏⊆𝑐

H̃′(T) [𝑏] . (23)

Our goal is to obtain the transitions based on the embeddings related to flows, and inspired by the matrix decom-
position [19], we consider the multiplication operation to realize this. Specifically, the transitions from buildings
to clusters, T̃ [:, :, 1] ∈ R𝑁 (B)×𝑁 (C) , are calculated as multiplication of the building-level outflow embeddings H̃′(T)

and cluster-level inflow embeddings H̃(C) , i.e.,

T̃ [:, :, 1] = ReLu
(
H̃′(T) ·

(
H̃(C)

)⊺)
, (24)

where we apply a ReLu activation function to ensure the prediction is always positive. Similarly, the transitions
from clusters to buildings, T̃ [:, :, 2], are given by the multiplication of the building-level inflow embeddings H̃(T)

and cluster-level outflow embeddings H̃′(C) , i.e.,

T̃ [:, :, 2] = ReLu
(
H̃(T) ·

(
H̃′(C)

)⊺)
. (25)
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We finally incorporate the hidden features of historical transitions, H(His)
𝑘∗ , into T̃ by a gated fusion mechanism

described in Sec. 3.4.3, and obtain the final building-cluster transition prediction, T̂ ∈ R𝑁 (B)×𝑁 (C)×2.

4.2.2 AP-level Flows. Similarly, we use the building-level embeddings from the external factor fusion (H̃(F) and
H̃′(F) ) to predict the AP-level flows. Specifically, we map the building-level inflow embeddings H̃(F) to all the
APs which are situated within the same building via a trainable indicator matrix, J ∈ R𝑁 (A)×𝑁 (B) , to generate the
AP-level inflow embeddings, F̃(A) ∈ R𝑁 (A)×𝑤 , i.e.,

F̃(A) = J · H̃(F) . (26)

Note that J indicates which building an AP is located at, i.e.,

J[𝑎, 𝑏] =
{
u[𝑎], for 𝑎 ⊆ 𝑏;
0, otherwise,

(27)

where u =
[
u[1], ..., u[𝑎], ...u[𝑁 (A) ]

]
∈ R𝑁 (A) is the vector of the trainable parameters which are learned by

the model during training. We similarly obtain the AP-level outflow embeddings, F̃′(A) . We then adopt a Dense
layer with a ReLu activation function which is to ensure non-negative outputs to generate the final predictions
of AP-level flows at the future time interval, F̂(A) ∈ R𝑁 (A)×2 (̂F(A) [:, 1] denotes inflows and F̂(A) [:, 2] denotes
outflows), i.e.,

F̂(A) [:, 1] = ReLu
(
Dense

(̃
F(A)

))
, F̂(A) [:, 2] = ReLu

(
Dense

(̃
F′(A)

))
. (28)

4.2.3 Multi-Task Model Training. In training GAEFT, we adopt the Frobenius Norms (FNs) to measure the training
loss on the predicted building-cluster transitions, i.e.,

L (T) =

√√√ 2∑︁
𝑖=1

𝑁 (B)∑︁
𝑏

𝑁 (C)∑︁
𝑐

(
T̂ [𝑏, 𝑐, 𝑖] − T [𝑏, 𝑐, 𝑖]

)2
, (29)

and use the Mean Squared Errors (MSEs) to measure the loss in the predicted AP-level crowd flows, i.e.,

L (F) =
1

2𝑁 (A)

2∑︁
𝑖=1

𝑁 (A)∑︁
𝑎

(̂
F(A) [𝑎, 𝑖] − F(A) [𝑎, 𝑖]

)2
. (30)

Given above, GAEFT formulates a joint loss function for the multi-task learning, and jointly minimizes the weighted
sum of L (T) and L (F) , i.e.,

L = _ (T) · L (T) + _ (F) · L (F) , _ (T) ∈ [0, 1], _ (F) ∈ [0, 1] . (31)

Through the above formulation, we can leverage the inherent correlations across the crowd flows and transitions,
and jointly enhance the GAEFT’s learnability upon the sparse mobility data.

5 EXPERIMENTAL STUDIES
We first present the experimental setup in Sec. 5.1 and then provide the experimental results in Sec. 5.2.

5.1 Experimental Evaluation Setup
5.1.1 Baselines. We compare GAEFT with the following four categories of baseline approaches.

(a) Traditional Time Series Approaches:
★ GP: which leverages Gaussian Process (GP) with the radial basis function (RBF) kernel.
★ ARIMA: which leverages the Autoregressive Integrated Moving Average (ARIMA).
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(b) Temporal Sequence Learning Approaches:

★ Recurrent Neural Network/Long Short-Term Memory Network/Gated Recurrent Unit (RNN/LSTM/GRU): We
set the dimension of each hidden state as 16 for each of them to predict the time series.

★ TPA-LSTM: which leverages LSTM with temporal attention to forecast the multivariate time series [34]. We
set the size of LSTM hidden states as 128.

(c) Spatial Learning Approaches:

★ CNN: which uses 7-layer convolutional neural network (CNN) to predict the crowd mobility.
★ GCNN: Graph Convolutional Neural Network (GCNN) [24] considers the adjacencymatrix as trainable matrices

and historical values as the node features to generate the building-level inflow/outflow embeddings.

(d) Spatio-Temporal Learning Approaches:

★ ResNet: which takes the building-cluster transitions matrix as the input and adopts three blocks of spatio-
temporal residual neural networks [48] which capture the short-, mid-, and long-term mobility patterns.

★ GEML: which leverages the grid-embedding-based multi-task learning [42] to generate the building-level
inflow/outflow embeddings.

★ LGNN: which leverages the line graph neural network by fusion of the link graph convolution, node graph
convolution and historical transition matrices [43].

★ CSTN: which leverages the convolution embedded LSTM-based method to form a contextualized spatial-
temporal network [27].

5.1.2 Experimental Settings. For all the schemes, we leverage the crowd mobility data in the past 24 hours to
predict the building-cluster transitions and AP-level flows in the future 1 hour. We evaluate the model performance
based on the Wi-Fi association data from 2020-10-11 to 2020-11-10 (Fall semester), and from 2021-02-02 to 2021-
04-10 (Spring semester). In our experiment studies, we mitigate the potential ping-pong effects [20] by removing
the dissociation and reassociation within 30 min (since our time interval is set as 1h). The training data include
the first 26 days of Fall, and the first 53 days of data for Spring, and we leave the rest of the data for model
testing. We train the affinity propagation algorithm for 200 iterations and obtain 21 clusters as shown in Fig. 6.
We process the data and conduct model training on a server with 1× AMD Threadripper 3960X 24-Core CPU, 128
GB RAM, and 4× Nvidia GeForce RTX3090. Our model is built on TensorFlow 2.4.0 with CUDA 11.1.
Unless otherwise stated, we use the following parameters in GAEFT by default. We set 𝛽 = 1 in Eq. (2) in

the spatio-temporal clustering. In affinity propagation clustering we set the diagonal of the similarity matrix
to be the median of the other entries, and we set the damping factor as 0.9. We set the size of building-level
inflow/outflow embeddings𝑤 = 12, and use𝑀 = 1 spatial attention heads and 𝑃 = 3 temporal attention heads. We
adopt Conv2Ds with respective channel sizes of 16, 8, and 2 for the 3 convolutional layers to encode the historical
transitions as discussed in Sec. 4.1. We set _ (T) = 1/16 and _ (F) = 15/16 for the multi-task objective function
(Eq. (31)). We set the batch size to be 64. We apply L2 regularization upon the trainable parameter matrices
in the attention mechanisms (Eqs. (8), (9), (11), (14), and (15)), i.e., Q(Sp

𝑚 , X(Sp)
𝑚 , V(Sp)

𝑚 , Q(Tp)
𝑝 , X(Tp)

𝑝 , and V(Tp)
𝑝 ,

where the regularization parameters are set to 0.05. We add a Dropout layer to the building-level inflow/outflow
embeddings (Eq. (7)) which are the inputs of the attention module with a dropout rate of 0.1. The model is trained
for 5,000 iterations with a learning rate of 0.005 by Adam optimizer. The training time is 26min based on our
default parameter settings. The average inference time for each target time interval is 4.47ms based on our test
data.

We use the following metrics for the performance evaluation. Given the predicted building-cluster transitions
T̂𝑟 and the ground truths T𝑟 at time interval 𝑟 out of totally 𝑅 intervals in the testing set, we define the Average
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Table 2. Overall performance comparison.

Schemes Transitions Flows
FN ARSE(T) MSE ARSE(F)

GP 187.973 2.564 19.726 3.779
ARIMA 198.427 2.706 22.381 3.915
RNN 133.607 1.822 7.488 2.535
GRU 115.747 1.579 4.855 2.091
LSTM 110.314 1.505 4.207 1.946
TPA-LSTM 108.205 1.476 7.157 2.470
CNN 139.830 1.907 12.959 3.165
GCNN 96.294 1.313 6.280 2.396
ResNet 98.313 1.341 5.098 2.172
GEML 104.107 1.420 3.717 1.832
LGNN 95.793 1.306 7.099 2.386
CSTN 87.145 1.189 7.025 2.414
GAEFT 84.603 1.154 3.173 1.697

Table 3. Weekday/weekend predictions.

Schemes Transitions Flows
Weekdays Weekends Weekdays Weekends

FN ARSE(T) FN ARSE(T) MSE ARSE(F) MSE ARSE(F)

GP 199.007 2.714 167.481 2.284 22.087 3.947 15.341 3.466
ARIMA 208.831 2.848 179.104 2.443 25.600 4.120 16.402 3.536
RNN 138.993 1.896 123.606 1.686 7.849 2.599 6.819 2.415
GRU 118.736 1.619 110.197 1.503 4.752 2.067 5.047 2.134
LSTM 112.678 1.537 105.923 1.445 4.153 1.938 4.306 1.961
TPA-LSTM 110.041 1.501 104.795 1.429 7.380 2.516 6.743 2.384
CNN 144.966 1.977 130.293 1.777 13.735 3.270 11.519 2.969
GCNN 95.650 1.305 97.491 1.330 6.501 2.443 5.871 2.309
ResNet 98.450 1.343 98.058 1.337 5.044 2.162 5.197 2.191
GEML 106.148 1.448 100.317 1.368 3.687 1.830 3.773 1.834
LGNN 96.018 1.310 95.375 1.301 7.285 2.418 6.753 2.326
CSTN 88.576 1.208 84.487 1.152 7.306 2.470 6.503 2.310
GAEFT 84.755 1.156 84.322 1.150 2.981 1.656 3.530 1.772

Root Squared Error (ARSE(T) ) as

ARSE(T) =
1
𝑅

𝑅∑︁
𝑟=1

√√√
1

2𝑁 (B)𝑁 (C)

2∑︁
𝑖=1

𝑁 (B)∑︁
𝑏=1

𝑁 (C)∑︁
𝑐=1

(
T̂𝑟 [𝑏, 𝑐, 𝑖] − T𝑟 [𝑏, 𝑐, 𝑖]

)2
. (32)

We evaluate the prediction of building-cluster transitions by ARSE(T) and Frobenius Norms (denoted as FNs;
same as Eq. (29)). Note that FNs of transitions represent the square root of sum of differences between predictions
and ground-truths over all building-cluster pairs.
For prediction of flows of APs, the corresponding ARSE(F) is formulated by

ARSE(F) =
1
𝑅

𝑅∑︁
𝑟=1

√√√
1

2𝑁 (A)

2∑︁
𝑖=1

𝑁 (A)∑︁
𝑎=1

(̂
F(A)𝑟 [𝑎, 𝑖] − F(A)𝑟 [𝑎, 𝑖]

)2
. (33)

We then adopt ARSE(F) and MSEs (same as Eq. (30)) for AP-level flow prediction.

5.2 Experimental Results
5.2.1 Overall Model Performance. We compare the model performance of different algorithms in Table 2. In
summary, GAEFT has achieved overall lower errors than the baseline models regarding transitions (by 26.6%
reduction on average) and flows (by 41.7% reduction on average). Regarding each of the four baseline categories,
i.e., traditional time series approaches, temporal sequence learning, spatial learning, and spatio-temporal learning,
GAEFT improves the accuracy by 56.2%, 27.2%, 25.8%, and 11.8%, respectively, on average for transition prediction
and by 70.4%, 33.6%, 50.1%, and 31.3%, respectively, on average for AP-level flow prediction.
Specifically, traditional machine learning models such as GP and ARIMA, might not fully capture the spatial

correlations between locations as well as the spatio-temporal features at their neighborhood. Temporal sequence
learning approaches like RNN, LSTM, GRU and TPA-LSTM are only able to capture the temporal correlations of the
inflow/outflow features of each building. Regarding the spatial learning approaches, the convolution operations
in CNN focus on the building-cluster transition matrices. GCNN encodes the spatial correlations between buildings
into the trainable adjacency matrix of graph convolutional network, which might underestimate the temporal
correlations across historical time intervals. From the results, we can see solely using the temporal sequence
learning or spatial learning cannot fully capture the complex and sparse crowd mobility on campus.

In terms of spatio-temporal learning, ResNet cannot fully capture the features of the highly sparse building-to-
cluster transition matrices. GEML takes in both geo-distance and connectivity between buildings as the building
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correlations for the graph aggregation operation. However, its formulation might discard the aggregated spatial
features of the inflows and outflows in the LSTM structure. LGNN captures the spatio-temporal correlations between
buildings and clusters through the link and node graphs, encoding the information of historical transitions.
However, LGNN does not consider differentiating the contributions of different building and temporal features. CSTN
takes the spatial and temporal characteristics of transition patterns and the impact of external factors including
weather and weekdays/weekends into account. We note that GAEFT shows slight improvements compared to CSTN
regarding the transition prediction. This is likely because CSTN might also account for individual contributions
of different buildings to the transitions and yield good accuracy. Nevertheless, unlike GAEFT, CSTN might not
effectively take into account the spatio-temporal correlations of the building neighborhoods encoded in the
cluster-level inflow/outflow embeddings. In addition, CSTN might not fully capture the building features essential
for AP-level crowd flow modeling, leading to degradation in the flow prediction accuracy.

Different from the above models, GAEFT captures the nearby spatial correlations via the novel graph aggregator.
In addition, the spatial and temporal attention mechanisms jointly learn the spatial and temporal correlations in
the whole building network. The extraction of building-level inflow/outflow embeddings is further enhanced by
incorporation of the spatio-temporal knowledge of building clusters. Therefore, GAEFT outperforms the above
state-of-the-art methods.

5.2.2 Impacts of Weekdays/Weekends. We compare GAEFT with other baselines and state-of-the-arts during
weekdays and weekends in Table 3, from which we can see that GAEFT outperforms other schemes in terms
of accuracy and robustness. For most of the models studied, the accuracy on weekends is generally higher
than that on weekdays for both building-cluster transitions and AP-level flows. This is probably due to more
activities on campus on weekdays than those on weekends, leading to more complex mobility patterns for
mobility modeling. We also note that since the building-cluster transitions and AP-level flows exhibit different
patterns on weekends and weekdays (Sec. 2.2), incorporating external factors such as indicators of weekdays can
help maintain accuracies of GAEFT.

5.2.3 Ablation Studies. We conduct the ablation studies regarding multiple design components in GAEFT.
(a) Importance of Major Components of GAEFT: We first study in Fig. 13a the impacts of the five major

components in GAEFT upon the transitions (using FNs) and flows (using MSEs). We compare GAEFT (denoted as
w/ all) with its variants that remove each of the components: (i) cluster-level inflow/outflow embeddings (w/o
cluster), (ii) both spatial and temporal attentions (w/o st attn), (iii) spatial attention (w/o s attn), (iv) temporal
attention (w/o t attn), (v) external factors (w/o ext), and (vi) historical transitions (w/o ht). The results are based
on the last 7 days’ data of the 53 days’ data in the training set of 2021 Spring.

w/ all w/o cluster w/o st attn w/o s attn w/o t attn w/o ext w/o ht
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(a) Ablation study on major components of GAEFT.
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(b) Effectiveness of multi-task learning.

Fig. 13. Ablation studies on: (a) major components of GAEFT; (b) multi-task learning.

We can see that all the five components help improve the model performance. In terms of transition predictions
(FNs), we can observe that historical transitions (Sec. 4.1), spatio-temporal clustering (Sec. 3.2), and spatio-temporal
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attentions (Sec. 3.4) contribute the most. The historical transitions and clustered buildings help mitigate the
sparsity within the crowd mobility data, while spatio-temporal attentions particularly improves the learnability
upon the global correlations among the clusters and buildings. In terms of flow predictions (MSEs), we can
see that spatio-temporal clustering (Sec. 3.2) and the spatial and temporal attentions (Sec. 3.4) lead to the most
significant improvements. Temporal attention provide slightly more improvements in transitions and flows than
the spatial attention due to the more complex temporal dynamics in crowd flows and transitions.

(b) Effectiveness of Multi-task Learning: We further investigate the effectiveness of mulit-task learning of GAEFT
by training and testing the model with only building-cluster transition prediction (denoted as “w/o f”, i.e., _ (F) = 0)
and with only AP-level flow prediction (denoted as “w/o tr”, i.e., _ (T) = 0). The results are based on the last 5 days’
data of the 26 days’ data in the training set of 2020 Fall. Fig. 13b shows that the multi-task learning enhances the
predictions regarding the crowd flows and transitions. The inflows/outflows are aggregated from, and hence are
inherently correlated with, all the transitions arriving at/departing from each locations. Our GAEFT incorporates
such correlations and, therefore, improves the prediction accuracy.

5.2.4 Sensitivity Studies. We conduct sensitivity studies regarding four important parameters in Fig. 14, based
on the last 7 days’ data of the 53 days’ data in the training set of 2021 Spring.
Fig. 14a shows the FNs and MSEs versus the size of building-level inflow/outflow embeddings in the graph

aggregator, 𝑤 (𝑤 ∈ {6, 12, 18, 24}). When the embedding size is small (say, 6), it may not be able to capture
enough mobility information and hence low accuracy is achieved. As𝑤 increases, the accuracy of GAEFT improves.
However, as 𝑤 further increases, noisy information may be captured and degrade the performance. Based on
above, we set𝑤 = 12 to maintain an overall high accuracy in our multi-task learning.
Fig. 14b shows the FNs and MSEs versus number of spatial attention heads,𝑀 (𝑀 ∈ {1, 2, 3, 4}). We can see

that the prediction errors increase as 𝑀 increases mainly due to the more noisy spatial mobility information
captured by the additional but redundant attention heads. Therefore, we set𝑀 = 1 by default.
Fig. 14c further shows the prediction errors given different numbers of temporal attention heads, i.e., 𝑃 ∈

{1, 2, 3, 4}. As 𝑃 increases, GAEFT is able to capture more information and differentiate the embeddings between
different time intervals, leading to the performance improvements. However, as 𝑃 further increases, more noisy
features from the crowd mobility data might be learned, and hence the errors of GAEFT increase, showing a
diminishing return. Therefore, we set 𝑃 = 3 by default.
Besides above, we evaluate the impact of number of historical intervals (denoted as 𝐾) in Fig. 14d. We can

observe that GAEFT might achieve large errors given a time window which is either too short or too long. When
𝐾 = 24 time intervals, the historical time intervals may provide adequate information for the model learning.
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Fig. 14. Sensitivity study of (a) size of building-level inflow/outflow embeddings (𝑤 ); (b) the number of spatial attention
heads (𝑀); (c) the number of temporal attention heads (𝑃 ); and (d) the length of time intervals (𝐾 ).

5.2.5 Visualization. We further visualize the evaluation results of GAEFT.
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(a) Spatial and Temporal Attention Weights: We visualize the weights of the spatial attention head for outflow
embedding of all buildings, i.e., 𝜶 (Sp)

𝑘,1 (Eq. (10) in Sec. 3.4), at 11am–12pm (Fig. 15a) and 0am–1am (Fig. 15b),
respectively, on the same Friday. The spatial attention mechanism differentiates the spatial features of buildings
based on the their mobility patterns. The higher 𝜶 (Sp)

𝑘,1 [𝑏] indicates larger contribution of features of building 𝑏
to the final prediction. We can see that the differences in the weights between buildings vary with time, and are
more significant at daytime than at midnight. This is mainly because the number of crowd flows for all buildings
is small at night but skewed at the center of campus in the daytime. Comparing Fig. 15 with Fig. 2, we can also
see that the buildings with higher flows have larger attention weights (thus more important).
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Fig. 15. Illustration of (a, b) spatial attention head weights for two different time intervals; and (c) 24-hour temporal attention
weights (1st attention head) for a target time interval (0–1am on 2021-03-27).

We select the first temporal attention head for building-level outflow embeddings and illustrate its temporal
attention weights, i.e., 𝜶 ′ (Tp)

𝑘,1 [𝑏] (Eq. (15) in Sec. 3.4), in Fig. 15c. Specifically, we show the attention weight upon
each of the 24 hours (𝑘 ∈ {1, . . . , 24}) before the target time interval (0am–1am on 2021-03-27) to be predicted.
We note that the 𝜶 ′ (Tp)

𝑘,1 [𝑏] represents the importance of the building-level outflow embeddings of time interval
𝑘 in all 24 historical time intervals, and the higher value represents the higher correlation between 𝑘 and the
target time interval. We can see higher attention weights in Fig. 15c during two levels of temporal closeness, i.e.,
approximately 6 hours and 24 hours, which are mainly due to the periodic travel routines and campus activities.

(b) Transition and Flow Predictions: We further visualize two cases with predictions and ground-truths in terms
of building-cluster transitions and AP-level flows in Figs. 16 and 17. The demonstrated accuracy on the dynamic
transition/flow data validates the effectiveness of our model designs.
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Fig. 16. One-week transitions from a dining hall and a clus-
ter.
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Fig. 17. One-week outflows of an AP in a residential hall.
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6 RELATED WORK
We review the related work in the following three categories.

(a) Flow/Transition Prediction: Predicting crowd flows has become an essential task for many urban applica-
tions [16–18]. A pioneering study by Zhang et al. [48] predicted the inflows/outflows of different city regions by
spatio-temporal residual networks. Lin et al. further developed a context-aware spatio-temporal neural network
for crowd flow prediction in metropolis [25]. Pan et al. proposed a deep meta learning approach to predict the
urban traffic flows [31]. Jiang et al. achieved prediction of crowd dynamics at big events by an online system
which forecasted the trend in the short future only from the current observations [21]. Origin-destination transi-
tion prediction has been recently considered for travel time estimation [37] and travel demand prediction [29].
Despite the accuracy achieved, the prior studies [10, 19, 42] cannot fully differentiate the diverse impacts of the
spatio-temporal sparsity and skewness. Furthermore, few of these existing flow/transition studies have studied
jointly leveraging flows and transitions to mitigate the sparsity in the data.
Our GAEFT fills the gap in studying predictive multi-task crowd analytics on flows/transitions by using the

Wi-Fi association data. To further mitigate the sparsity and skewness issues within transitions, we propose a novel
building clustering technique based on buildings’ geo-locations and transition patterns. Different from [23], we
design a spatio-temporal clustering algorithm based on affinity propagation to group the buildings into clusters,
and accurately predict the crowd transitions between buildings and clusters.
(b) Graph Neural Networks: Conventional graph embedding methods for graph neural network often char-

acterize correlations between locations based on spatial closeness [44]. However, existing methods [22, 41, 49]
often focus on the graph embeddings locally captured by correlations between node features of neighboring
nodes or diffusion process towards surrounding nodes, while the global impacts on the entire graph network
have not been thoroughly considered, making it hard to capture the mobility patterns on the spacious urban sites
like the university campuses. While the multi-graph approaches [8, 26] have been studied for different mobility
applications, they cannot effectively reflect the hierarchical structures (APs/buildings/clusters) introduced by our
spatio-temporal clustering. Instead, we propose a novel spatio-temporal graph attention embedding mechanism
to capture and differentiate the spatial and temporal correlations in both local and global scopes, thus enhancing
the learnability on the complex crowd mobility data.
(c) Wi-Fi for Mobility Analysis: With ubiquitous adoptions of mobile devices, Wi-Fi network data has been

studied for various smart mobility applications [12–15]. Sapiezynski et al. utilized Wi-Fi data to infer person-to-
person proximity [32]. Using Wi-Fi probe data, Traumuel et al.modeled the urban movement by network analysis
at various street segments [38]. Zhou et al. analyzed the crowd behaviors in a social event through data mining of
Wi-Fi sensing data [50]. Instead of tracing individuals [39] that is privacy-intrusive, we focus on leveraging Wi-Fi
association and dissociation data to predict the spatio-temporal transitions and flows of crowds, and our case
study insights and findings will help enable proactive and accurate crowd mobility analytics and management.

7 DEPLOYMENT DISCUSSIONS
We discuss the deployment of GAEFT in the following three aspects.

(a) Privacy: Via our data preprocessing, all sensitive user-related information has been removed, and both
associations/disassociations and transitions have been aggregated before further data analytics. In this work, we
aim at predicting the collective and aggregate number of transitions and flows instead of analyzing the mobility
patterns of individuals, which preserves the user privacy. Our project has been vetted by the university internal
review board (IRB) and no IRB approval is needed due to no privacy concern. Further privacy-preservation
enhancement is orthogonal to our studies here and can be referred to [5, 7].

(b) Impacts of COVID-19 Pandemic: We note that despite the pandemic impacts on our campus during 2020–2021
academic year, the students, faculty, and staff still had access to the academic buildings. Our core model designs
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in this study is general, and can be applied upon the crowd flows and transitions collected after the pandemic.
Further in-depth studies on the variations of crowd mobility patterns from the Wi-Fi data collected before, during,
and after the COVID-19 pandemic will be considered in our future work.
(c) Incorporation of Other Factors: In this work, we use the weather conditions and weekends/holidays as the

external factors. Other factors such as various campus events held in the buildings/classrooms may influence the
transitions and flows [3]. We will further include these factors in our future work.

8 CONCLUSIONS
We propose GAEFT, a novel multi-task graph attention neural network for predicting the crowd transitions
and flows based on collective campus Wi-Fi association data. Through crowd analysis, we have identified the
sparsity and skewness in the crowd mobility data in addition to the complex spatio-temporal characteristics of
the crowd transitions and flows. To address this, we design a novel geographic clustering to group the buildings
into neighborhoods with similar transition features, and a novel attention-based graph neural network which
captures the spatial and temporal correlations between buildings. GAEFT jointly predicts the transitions between
buildings and clusters, and the flows of APs in the buildings. Extensive experimental studies have corroborated
the accuracy of GAEFT in predicting the dynamic, complex, and sparse transitions and flows.
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