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Abstract—Dockless E-scooter Sharing (DES) has become a popular means of last-mile commute for many smart cities. As e-scooters

are getting deployed dynamically and flexibly across city regions that expand and/or shrink, accurate prediction of the e-scooter

distribution given the reconfigured regions becomes essential for city planning. We present GCScoot, a novel flow distribution

prediction approach for reconfiguring urban DES systems. Based on real-world datasets with reconfiguration, we analyze e-scooter

distribution features and flow dynamics for the data-driven designs. We propose a novel spatio-temporal graph capsule neural network

within GCScoot to predict future dockless e-scooter flows given the reconfigured regions. GCScoot pre-processes historical spatial e-

scooter distributions into flow graph structures, where discretized city regions are considered as nodes and inter-region flows as edges.

To facilitate initial training, we cluster the regions and generate virtual data for new deployment regions based on their peers in the

same cluster. Given above designs, the region-to-region correlations embedded within the temporal flow graphs are captured via the

multi-graph capsule convolutional neural network which accurately predicts the DES flows. Extensive studies upon four e-scooter

datasets (total > 3.4 million rides) in four populous US cities have corroborated accuracy and effectiveness of GCScoot in predicting

the e-scooter distributions.

Index Terms—Dockless e-scooter, reconfiguration, distribution prediction

Ç

1 INTRODUCTION

POWERED by the rapid growth of on-demand and sharing
economy, dockless electric-scooter sharing (DES) sys-

tems have been proliferating in many metropolitan areas
worldwide. As illustrated in Fig. 1, built upon mobile pay-
ment, Internet-of-Things (IoTs) and location-based services,
DES does not, in general, require fixed docking stations for
users to receive or return the e-scooters. With dockless and
motorized (electric motors and batteries) features, DES pro-
vides another faster and easier first/last-mile connectivity
of the city [1], [2] beyond the conventional bike sharing.
According to the National Association of City Transporta-
tion Officials, over 85,000 e-scooters were deployed in
around 100 cities in US as of 2018.1

Due to the increasing commercial potential (DES platforms
like Bird and Lime have raised USD$1.48 billion by April
2019 [1]) and growing socio-economic acceptance, many city
planners as well as service providers are considering expand-
ing their deployment coverage. For example, the expansion

program inWashingtonD.C. is expected to increase 50 percent
of the e-scooter deployment in 2019 [3]. Spin, the DES supplier
acquired by Ford at the end of 2018, has announced in Febru-
ary 2020 its expansion into Europe, including their first inter-
national fleet in Cologne, Germany [4]. On the other hand, e-
scooter geofencesmay shrink in some regions of the city given
new administrative decisions. Such expansion and shrinkage,
or reconfiguration as shown in Fig. 1, is done region-by-region
followed by official evaluations (say, public hearings, town
hall meetings and user survey). Therefore, how to accurat-
ely forecast the e-scooter distributions in to-be-reconfigured
regions is essential for the predictive and precautionary deci-
sions of city planners andDES service providers.

Such a proactive and accurate forecast also provides the
initial clues of selecting regions to enhance expected platform
revenues and mitigate potential alternation of local traffic
environments. City expenditure due to labor-intensive site
surveys can be reduced/eliminated. Furthermore, accurate
knowledge of e-scooter proliferation helps balance the dem-
ands and supplies of e-scooters, and prevent/reduce under-
served customers and over-congested side walks due to
excessive parking of e-scooters, which has become substantial
impediments to commercial profitability and social welfare of
manyDES systems and their communities.

Despite the progresses made in existing DES deployment,
there still remain several technical challenges and concerns
before a satisfactory reconfiguration decision can bemade:

(a) Due to sparsity and scarcity, or even absence of initial tri-
als in newly-expanded regions, future e-scooter dis-
tributions may not be simply modeled by existing
time-series prediction based on historical records.

(b) Due to its dockless, easy-maneuvering and last-mile
nature, e-scooters traveling across city regions form
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complex inter-dependencies, commute connectivities and
mobility correlations, making it even more difficult to
predict post reconfiguration effects. Introducing or
removing certain deployment regions may lead to
sophisticated effects upon the mobility patterns of
neighborhoods.

(c) Few studies have conducted data analytics on the
spatial and temporal distributions of existing metropolitan
DES systems. However, models/components should
be carefully designed based on the deployment
insights, which are essential for any data-driven
model study.

To address the above challenges, we propose GCScoot, a
novel dynamic e-scooter flow prediction scheme based on
spatio-temporal Graph Capsule neural network for reconfi-
guring the urban e-Scooter sharing systems. Specifically,
based on the extensive data analytics upon four DES data-
sets, we identify several design features for the urban DES
systems. Using these results, we design a novel spatio-tem-
poral graph capsule convolutional neural network, called
STGCapNet, for dynamic flow distribution of urban DES
reconfiguration. Taking into account the reconfigured city
regions and their correlations, GCScoot comprehensively
captures the dynamic impacts of reconfigured city regions
upon the e-scooter distributions, and the graph capsule con-
volution accurately predicts the DES flows.

The main contributions of GCScoot are summarized as
follows:

1) Data-driven analytics & designs for dockless e-scooter
reconfiguration (Section 4): In order to adapt to expan-
sion dynamics, we have conducted extensive data-
driven studies using the real-world datasets from
the DES systems. We have studied the mobility fea-
tures of DES systems given reconfigured deploy-
ment, and provided comprehensive data-driven
designs for the following flow prediction. To the best
of our knowledge, this is the first study that investi-
gates, identifies and formulates the dockless e-
scooter sharing flow distribution prediction problem
given the reconfigured deployment.

2) Spatio-temporal graph capsule neural network for recon-
figured DES distribution forecasting (Section 5): We
propose a data-driven design for DES distribution
prediction based on a novel spatio-temporal graph
capsule neural network called STGCapNet. The
proposed multi-scale feature extraction based on

multi-layer graph convolution comprehensively
retrieves the correlations among the reconfigured
regions. By mining the connectivities between the
existing, new and removed regions, STGCapNet

learns the reconfigured DES mobility features.
Dynamic routings between the graph convolutions
and capsules capture the geographical properties via
vectorized representations [5], thus leading to high
accuracy in the dynamic flow prediction. We have
further designed multi-graph mechanism to enhance
the GCScoot’s accuracy based on multiple temporal
DES network graphs in the historical records.

3) Region clustering & virtual data generation for efficient
GCScootinitialization (Section 6): To further enhance
GCScoot’s adaptability to regions without historical
DES deployment, we design an efficient region clus-
tering and virtual trip data generation for model ini-
tialization. By clustering the DES regions before
reconfiguration, we find the similar ones in terms of
region-to-region POIs (points-of-interest) similarities
and generate the initial and short-term trip distribu-
tion data as the training inputs of the new regions.
This way, the model initialization of GCScootcan be
facilitated with enhanced training and prediction
efficiency.

4) Extensive data-driven & experimental studies (Section 7):
Based on the above analytics and network formula-
tion, we have conducted extensive experimental
studies upon over 3.4 million rides from different e-
scooter datasets in four populous US cities including
Austin TX, Louisville KY, Minneapolis MN and Chi-
cago IL. Our results have corroborated the accuracy,
effectiveness and robustness of GCScoot in predict-
ing the dynamic distribution of dockless e-scooter
mobility under various experimental settings.

The rest of the paper is organized as follows. We first dis-
cuss the related work in Section 2, followed by an overview
of the concepts, problem formulation and data sets in Sec-
tion 3. Then, we present in Section 4 the data-driven analyt-
ics and designs for DES reconfiguration, followed by the
core dynamic prediction framework in Section 5. After-
wards, the module integration and model initialization/
cold-start details are presented in Section 6. We then experi-
mentally evaluate the performance of GCScoot in Section 7,
discuss its deployment in Section 8, and finally conclude the
paper in Section 9.

2 RELATED WORK

We briefly discuss the related work as follows.
Smart Transportation. Recent advances of big data and deep

learning have redefined many research problems towards
smarter transportation and the resultant sharing economy [6],
[7]. Unlike prior smart and shared mobility studies [8], [9],
[10], our work focuses on rapidly proliferating dockless
e-scooter systems, and derives important insights and
data-driven designs for reconfiguring the deployment of
e-scooters. Despite its prototype studies upon the e-scooter
datasets, GCScoot can be adapted and extended to other on-
demand modalities with reconfigured deployment [11], [12],
including e-vehicle station relocation [13], car-sharing [14],

Fig. 1. Illustration of dockless e-scooters & DES reconfiguration.
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[15], bike-sharing [16], [17], [18], [19], [20], [21] and urban
planning [22], enhancing their service quality for the emerg-
ing smart connected community.

Traffic Flow Prediction. Conventional statistical analysis
and machine learning tools have been used for traffic flow
forecast. By modeling the traffic speed distributions as
images, Ma et al. [23] investigated the application of convo-
lutional neural network. Zhang et al. [24] proposed the spa-
tio-temporal residual neural network for bike mobility
prediction. With the road network graphs, a spatio-tempo-
ral graph convolutional network design for traffic series
prediction was discussed by Yu et al. [25], and graph neural
network studies have also been conducted by Wang et al.
[26]. For station-based bike sharing, Chai et al. [27] designed
a multi-graph convolutional neural network, which is fol-
lowed by Geng et al. [28] upon ride sharing services. Wu
et al. [29] proposed a graph wavenet with self-adaptive
adjacency matrix and graph convolution with dilated casual
convolution, and validated its performance with traffic
speed datasets. Yao et al. [30] and Wang et al. [31], respec-
tively, proposed a new meta-learning approach and a
region transfer method to transfer knowledge from multiple
cities. With meta-learning, Pan et al. [32] also studied the
diversity of spatial and temporal correlations.

Unlike these studies, GCScoot takes into account the
dynamic reconfiguration of scooter deployment regions,
and provides highly adaptive and accurate flow predictions
for e-scooter sharing. We propose novel data-driven designs
for DES systems, and show that our spatio-temporal graph
capsule neural network adapts to the dynamic reconfigura-
tion. DES service providers can leverage the adaptability
and accuracy of GCScoot predictions for more proactive
reconfiguration decisions and evaluations.

Dockless Vehicle Mobility Analytics. Thanks to location-
based service and IoTs, many single-track vehicle sharing
systems like bikes and e-scooters have rendered parking
docks obsolete. Pan et al. [33] studied a reinforcement learn-
ing algorithm in order to balance the dockless bike sharing
system. Liu et al. [34] leveraged the factor analysis and con-
volutional neural network to transfer the knowledge
between two cities, which is further followed by [35] regard-
ing domain adaptation. Smith et al. [2] studied the mobility
benefits of e-scooter sharing in Chicago.

GCScoot differs from these in the following perspec-
tives. We focus on the dynamic flow analytics for the emerg-
ing dockless e-scooter sharing due to its higher mobility and
more urban impact beyond the bike sharing. To address the
pressing reconfiguration concerns of the city planners, we
have conducted the pioneering studies and identified the
reconfiguration problems for DES deployment. Further-
more, through experimental studies upon the four urban
DES datasets, we have shown that the proposed network
within GCScoot outperforms the existing schemes in
adapting to the dynamic city regions through the novel joint
graph convolution and capsule learning.

A preliminary/early version of this work was pre-
sented [36]. Besides motivating, elaborating and discus-
sing more on the core formulation and deployment
(Sections 1, 2 and 8), this version adds significantly more
to the conference version from the following three major
perspectives:

� Multi-Graph Mechanism (Section 5): We further
enhance the accuracy of GCScoot’s prediction by
introducing the multi-graph mechanism within
GCScoot. Specifically, the design characterizes and
identifies the temporal region-to-region correlations
through multiple DES network graphs in the past
time intervals, and the performance improvement
is validated through our experimental evaluation
(Section 7).

� Adaptive Cold Start Mechanism based on Clustered
Regions (Section 6): We also add a novel region clus-
tering and data generation to enhance GCScoot’s
adaptability to cold-start, i.e., facilitating themodel ini-
tialization for the regions without historical DES trip
data. We have generated the virtual DES flows for
those regions based on their correlations with others
with historical trips. This enables GCScoot to better
capture the potential trips in the initial testing phase.

� Further Data Analytics & Experimental Studies (Sec-
tions 3, 4 and 7): We have also conducted more data-
driven and experimental studies with additional
data (including DES deployment from Chicago IL)
and settings regarding different design components,
and validated the effectiveness and accuracy of our
proposed scheme.

3 CONCEPTS, PROBLEM FORMULATION

& DATA SETS

We first briefly introduce the important concepts related to
GCScoot’s formulation in Section 3.1, and then present the
problem formulation in Section 3.2. Finally, we describe the
datasets for our data analytics in Section 3.3. The important
symbols used in this paper are listed in Table 1.

3.1 Important Concepts

Presented below are the definitions of important concepts.

Definition 1 (City Regions & Time Intervals). Like prior
work [24], [30], the entire map of a city is discretized into a set of
total N regions (say, rectangular grids in our case), yielding a
finite geographical set for computational convenience. Each
region is represented by the coordinate of its center, i.e., rn ¼
½latn; lonn� (n 2 f1; . . . ; Ng). Similar to the discretization of city
regions, the time domain is discretized into equal intervals (of
30 min in our prototype studies), each of which is labeled with k.

Definition 2 (DES Flow). Each trip represents a user’s scooter
ride at a certain time from a city region to another. Specifically, a
set of trips starting from region i to region j can be represented as
tði; jÞ ¼ i; j; ðti; tjÞ0s

� �
, where ðti; tjÞ is the pick-up/drop-off

timestamps of each trip in tði; jÞ. We further denote the DFS flow
at region i in an interval k as Fi ¼ Pi;Dið Þ, where Pi andDi are
the respective DES pick-ups and drop-offs there.

To better characterize the correlations, dependencies and
connectivities of different regions in a city, we model the
urban DES systems into a network graph structure. Based
on the above regions and flows, we introduce the DES net-
work graph.

Definition 3 (DES Network Graph). Given T ði; jÞ trips
between regions i and j (T ði; jÞ > 0, T ði; jÞ ¼ T ðj; iÞ, and
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i; j 2 f1; . . . ; Ng), we form the link or network connectivity of
the two regions. Considering N regions as vertices V and their
mutual connectivities (mutual flows) as edges, i.e.,

E ¼ T ði; jÞ0s� �
; 8i; j 2 1; . . . ; Nf g; (1)

we form the DES network graph as G ¼ ðV;EÞ.
In practice, the DES network undergoes dynamic recon-

figuration due to evolving user demands, city urbanization
and traffic alternation. Thus we have:

Definition 4 (DES Network Reconfiguration). Given the
periodic alternation (expansion or shrinkage) of DES deploy-
ment, we have two stages before and after each reconfiguration,
i.e., two sets of N and N 0 pick-up/drop-off regions denoted as V
and V0, respectively. The reconfigured regions are, therefore,
given by ðV [V0Þ n ðV \V0Þ.
The dynamic mobility of the DES users may lead to var-

iations in either V or E. To characterize the dynamically
evolving DES networks, we have

Definition 5 (Spatio-Temporal DES Network Graph).
At time interval k, given the deployed regions VðkÞ with pick-
ups/drop-offs and the mutual flows of the regions EðkÞ, we
denote the spatio-temporal DES network graph at the time
interval k as GðkÞ ¼ ðVðkÞ;EðkÞÞ. Similarly, we denote the DES
flows at the region i at the interval k as

F
ðkÞ
i ¼ P

ðkÞ
i ; D

ðkÞ
i

� �
: (2)

3.2 Problem Formulation & System Overview

Based on the concepts introduced above, we formally pres-
ent the problem formulation as follows.

Definition 6 (Dynamic Flow Prediction for Reconfig-
ured DES Systems). Given the spatio-temporal DES net-
work graphs in the past w time intervals, i.e.,

Gðk�wþ1Þ;Gðk�wþ2Þ; . . . ;GðkÞ
n o

; (3)

of the scooter pick-ups and drop-offs, as well as the reconfig-
ured regions Vðkþ1Þ at the target time interval kþ 1, we want
to proactively predict the dynamic flows

Fðkþ1Þ ¼ F
ðkþ1Þ
i

n o
; ði 2 1; . . . ; Nf gÞ; (4)

in the Gðkþ1Þ.

Based on the case studies and pilot programs of DES, the
reconfigured regions Vðkþ1Þ can be the result of negotiation
between the DES service providers and the city. The infor-
mation can be collected through public hearings, town hall
meetings, site survey and market analysis [37].

In order to solve the above problem, we propose
GCScoot, whose system framework as well as information
flow are illustrated in Fig. 2. Given the deployment trips of
the DES system (including regions before and after the
reconfiguration), analytics are conducted to pre-process the
data, deriving the spatial and temporal correlations charac-
terizing the DES deployment.

Specifically, spatial designs like road networks, regional
points-of-interest (POIs) and region-to-region distances are
collected. Temporal designs including historical flows and
other external factors (like time and weather) are also
retrieved from the DES deployment. We embed the external

TABLE 1
Major Symbols in GCScoot Formulation

Notations Definitions

rn Geographic location (center) of
region n in the city map

tði; jÞ Trips from regions i to j
T ði; jÞ Number of trips between regions i

and j
Fi DES flow at region i
G, V and E DES network graph, region

vertices and their trip edges
ADði; jÞ;AP ði; jÞ;ACði; jÞ Spatial, point of interest &

temporal correlations of ri and rj
A0

Dði; jÞ;A0
P ði; jÞ;A0

Cði; jÞ Masked correlations of ri and rj
given region introduction/removal

aðkÞði; jÞ Proportion of e-scooter rides from
regions i to j

~uði; jÞ Relative flow proportion between
regions i and j

hði; jÞ Connectivity metric between
regions i and j

ZðlÞ Representation of region features
at the layer l

WðlÞ Trainable weight matrix at the
layer l

~D Diagonal matrix consisting of
degrees of the input graph

sj Input vector to capsule j
eij Coupling coefficient between

primary and routing capsules
vj Output vector from capsule j
bij Likelihood that capsules i and j are

coupled

Fig. 2. Illustration of the system framework in GCScoot.
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factors for the fully connected neural network to learn the
temporal dynamics, while region correlations including flow,
distance and POIs are jointly considered in the graph capsule
neural network. We also prepare the region clustering and
generate cold-start (virtual) trip data formodel training.

Multi-layer graph convolution and capsule routing, with
multi-graph mechanism processing multiple input graphs
and flows, are applied to capture dynamic flow patterns. To
enhance the adaptability in the model cold-start, regions are
clustered based on the POI similarities, and virtual trip data
is then generated for the new regions based on their
assigned clusters. Predicted e-scooter flows for the DES
reconfiguration via both networks are merged and returned.
Combining the above factors, STGCapNet learns the corre-
lations between reconfigured regions and provides accurate
hints for the reconfiguration pre-evaluation.

3.3 Data Sets for Analytics & Evaluation

We have conducted our extensive data analytics and experi-
mental evaluation based on the following four datasets
from populous US cities:

� Austin, TX (May, 2018 – January, 2019): In total,
2,430,806 DES trips have been recorded, with the
pick-up/drop-off coordinates and timestamps, cov-
ering the bounding box of [-97.9�W, -97.58�W,
30.2�N, 30.499�N].2 Outliers have been removed
when trip distance falls out of [0.1, 500] miles or a
trip lasts for more than 24 hours.

� Louisville, KY (August, 2018 – May, 2019): The dataset
contains in total 193,937 trips with pick-up/drop-off
coordinates and timestamps, covering a geographic
bounding box of [-85.903�W, -85.486�W, 38.081�N,
38.340�N].3 Outliers have been removed when trips
were less than 0 miles or greater than 25 miles.

� Minneapolis, MN (July, 2018 – November, 2018): This
dataset provides totally 225,543 trips with pick-up/
drop-off coordinations as well as timestamps, cover-
ing a bounding box of [-93.38�W, -93.08�W, 44.89�N,
45.02�N].4 Outliers have been removed when trips
last for over 7 hours and were less than 0 miles or
exceeded 24 miles.

� Chicago, IL (June, 2019 – Sept, 2019): This dataset pro-
vides a total of 568,073 pilot scooter trips with pick-
up/drop-off coordinations as well as timestamps,
covering a bounding box of [-87.81�W, -87.63�W,
41.83�N, 41.96�N].5 Outliers have been removed
when the trips have pick-up/drop-off locations
missing, or exceed 8 hours.

We further show the dynamic flows of the DES pick-ups
and drop-offs during a week in each city in Fig. 3. We can
observe more DES flows (pick-ups/drop-offs) in Chicago
and Austin than Louisville and Minneapolis, as well as high
and dynamic volume of daily rides during weekends.
Regarding the Chicago deployment, only hour-level granu-
larity is provided by the Chicago open data portal following
the related privacy rules. Besides the above datasets, we
also retrieve the city map (street centerlines) and obtain the
POI data from the OpenStreet Map [38].

4 DES RECONFIGURATION ANALYTICS

Given the above datasets from the DES systems, we conduct
the reconfiguration analytics upon the DES networks. We
first overview the DES reconfiguration in Section 4.1, and
then present the data-driven studies of spatial and temporal
factors in Section 4.2.

4.1 Overview of Urban DES Reconfiguration

We have conducted the following deployment studies and
data analytics on the DES reconfiguration.

Urban DES Deployment & Reconfiguration. E-scooters and
their sharing economy have recently been shown to be more
competitive with the dominant car-commute lifestyle in the
United States than bicycles. Besides high mobility and dock-
less features, the sizes of most sharing e-scooters deployed
are physically smaller than conventional shared bicycles,
hence easier to maneuver and less space to park. Let us con-
sider the system records of both dockless e-scooter and bike
sharing (sameperiod) inAustin, TX as examples. Due to faster
speed (up to 15 mph) and easier maneuvering, the DES sys-
tems enjoy an 83.87 percent shorter trip time duration and
33.14 percent wider spectrum of travel distance than the bike
sharing (Austin B-Cycle) [39]. Such high mobility features as
well as more random pick-up/drop-off behaviors also make
the predictionmore difficult than conventional dock-based or
dockless bike sharing forecast schemes [34], [40].

Fig. 3. Dynamic flows of a week: (a) Austin (Aug., 2018); (b) Louisville (Oct., 2018); (c) Minneapolis (Oct., 2018); (d) Chicago (Sept. 2019).

2. https://data.austintexas.gov/Transportation-and-Mobility/
Shared-Micromobility-Vehicle-Trips/7d8e-dm7r, Accessed: May-2020.

3. https://data.louisvilleky.gov/dataset/dockless-vehicles,
Accessed: May-2020.

4. http://www.minneapolismn.gov/publicworks/trans/WCMSP-
212816, Accessed: May-2020.

5. https://www.chicago.gov/city/en/depts/cdot/supp_info/
escooter-share-pilot-project.html, Accessed: May-2020.
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On the other hand, isuch features also lead to an urban con-
troversy regarding safety, sidewalk/lane sharing and park-
ing. In many pilot studies (like in San Francisco [41]),
approaches that demonstrated a highest level of commitment
have been discussed before deployment in order to address
known challenges and concerns, ranging from public safety
and user education to equitable access and collaboration with
the city and its diverse communities. Based on feedbacks
from city supervisors and citizens at public hearings, many
DES service providers expand or shrink their service areas.

Throughout the pilot program and the subsequent
deployment, while DES vehicles are usually provided in
pre-determined regions, additional service regions may be
introduced to cater for the expanded demands. For exam-
ple, during dynamic reconfiguration, the service providers
in Austin are likely to increase DES vehicles at the city
regions other than the initially licensed ones [42]. Therefore,
we have observed additional deployment regions within
Austin, leading to an expansion as shown in Fig. 4 (parts of
the datasets are illustrated). Similar deployment expansions
have been observed in Louisville and Minneapolis. Com-
pared to other three cities, Chicago experiences reconfigura-
tion with minor shrinkage.

On the other hand, the DES deployment may be
restricted to certain areas of a city. Deployment shrinkage
may happen due to regulation by the government in city
planning decisions. For example, according to the Dockless
Mobility Program by Austin Transportation Department,
dockless e-scooters are not allowed within parks, off-street
parking lots or garages. The Transportation Department
may dynamically reduce the deployment of DES within a
specific area, thus changing the DES mobility.

To summarize, the aforementioned dynamics in Fig. 4
given deployment reconfiguration, along with mobility rou-
tines in Fig. 3, make it very challenging to predict the entire
reconfigured flow accurately.

Reconfigured Deployment Regions. Taking Austin as an
example, we show in Figs. 5, 6 and 7 the geographic pick-up
locations of deployment regions in August, October and
December of 2018, respectively. Specifically, we plot the heat-
map of pick-ups (in log 10ð�Þ) w.r.t. each of these months,
where the warmer colors indicate more and denser e-scooter
pick-ups. We further show the statistics of the reconfigured
regions (each region takes 0.2496 km2) from July to December
2018 in Fig. 8. We can observe that the reconfiguration

happens and the deployment regions are expanding or
shrinking at different parts of the city. Clearly, it is very chal-
lenging to adaptively predict the e-scooter flows for dynamic
reconfiguration, especially for those regions without prior
deployment knowledge of the DES flows.

The reconfigured regions, either introduced or removed,
may influence their neighbor regions significantly. We also
show in Figs. 9, 10, 11, and 12 the mutual influence of the
region usage. Specifically, we show in Figs. 9 and 10 the
regions (center locations) to the east of University of Texas,
Austin. The demands at region 0 which existed before the
reconfiguration benefit from the introduction of other
regions, since the expansions attract more neighborhood
users (including the university students). On the other
hand, in Figs. 11 and 12 we have illustrated a negative effect

Fig. 4. Usage dynamics at all regions in the four datasets.
Fig. 5. Pick-up distributions in August, 2018 (Austin).

Fig. 6. Pick-up distributions in October, 2018 (Austin).

Fig. 7. Pick-up distributions in December, 2018 (Austin).
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of expansions on the demands near the metropolitan park.
With more options of pick-up/drop-off locations, we can
observe a decrease in demand at region 0.

We can observe that the introduction of a region during
the reconfiguration may decrease or increase the usage of
its neighborhood, which may make it very challenging to
predict DES flows accurately. To address this difficulty, we
need to construct comprehensive network structures
regarding the region-to-region correlations, which can effec-
tively and efficiently capture the relationship between the
reconfigured regions.

4.2 Analytics on Spatial & Temporal Factors

We analyze the spatial factors related to the DES deploy-
ment as follows.

Distance. We correlate the regions based on their mutual
closeness. Due to diverse terrains and buildings in urban
and metropolitan areas, the travel distances between the
two regions can be greater than the geographic ones mea-
sured along the surface of the earth.

To reflect the terrain characteristics in our collected road
network data, we define the shortest path distance (unit:
km) between regions i and j as spðri; rjÞ. Based on the street
centerline obtained from the open data portal of the local
governments [43], [44], [45], [46], we can obtain the distance
between two city regions based on the shortest paths on the
map. We aggregate the lengths of the road segments along
the shortest paths between the centers of the two regions,
and form the corresponding distance between them.

We first show the correlations between regions versus
the distances. Taking Austin and Louisville as two exam-
ples, we show in Fig. 13 the mean usage correlations of
regions versus their mutual shortest path distances. In par-
ticular, we find all the pairs of city regions whose mutual
shortest path distance is within a certain range (say, 1�2
km), calculate their mutual DES usage correlations based on
Pearson correlation (sliding window size is 1 day within a
week), and find the mean of all correlation values between
all pairs. While more distant regions generally have lower
correlations, we can still observe some highly correlated
regions due to similar commute or entertainment purposes
there.

POI Factors. The functionality of city regions affects the
DES reconfiguration. To reflect this, we have collected the

Fig. 9. Centers of existing & new deployment regions (south of Cherry-
wood, Austin).

Fig. 10. Monthly demand increases with neighborhood expansion (ids:
locations in Fig. 9).

Fig. 11. Centers of existing & new deployment regions (near Zilker Met-
ropolitan Park, Austin).

Fig. 12. Monthly demand decreases with neighborhood expansion (ids:
locations in Fig. 11).

Fig. 13. Usage correlations versus distances: (a) Austin; (b) Louisville.

Fig. 8. Statistics of the DES deployment regions (Austin).
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points-of-interest (POIs) information from the Open Street
Map (OSM). Each POI is associated with specific attributes:
name, addresses, GPS coordinate and the corresponding
category. We have collected the following POI categories:
bank, bar, bike parking, cafe, car rental, cinema, clinic, fast
food, hospital, kindergarten, library, park, pharmacy, post
office, pub, restaurant, school and supermarket.

We take into account the following categories retrieved
from OSM. In total, we have collected 2,072, 1,014, 2,204 and
15,026 POIs for Austin, Louisville, Minneapolis and Chicago,
which are, respectively, as illustrated in Figs. 14, 15, 16 and 17.
We can observe the variations of POI types and location distri-
butions across the four cities. We also show in Figs. 18, 19, 20
and 21 the POI similarity matrices for all the regions w.r.t.
each of the four cities we have studied. Here we discretize the
city maps (with geographic bounding boxes defined in Sec-
tion 3.3) of Austin, Louisville, Minneapolis and Chicago into
32�32, 25�13, 11�11 and 15�15 grids. This discretization
takes into account the prediction granularity and the compu-
tational efficiency. Besides the prediction modeling, we will
leverage the POI similarities for the region clustering and vir-
tual data generation.

Temporal & External Factors. Recall that Fig. 3 shows the
temporal dynamics of DES pick-ups and drops-offs over the
time (one week) . Clearly, the DES flows are shown to experi-
ence burst during morning and late afternoon rush hours,
mainly because many DES users ride the dockless e-scooters
for commute. On the other hand, we further consider the
effect of weather conditions upon the DES deployment.
E-scooter usage can be influenced significantly by theweather.
For example, the sudden drops in both pick-ups/drop-offs on

Fig. 14. POIs in Austin, TX.

Fig. 15. POIs in Louisville, KY.

Fig. 16. POIs in Minneapolis, MN.

Fig. 17. POIs in Chicago, IL.

Fig. 18. Region-to-region POI similarities, Austin.

Fig. 19. Region-to-region POI similarities, Louisville.

Fig. 20. Region-to-region POI similarities, Minneapolis.

HE AND SHIN: DISTRIBUTION PREDICTION FOR RECONFIGURING URBAN DOCKLESS E-SCOOTER SHARING SYSTEMS 5729

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on April 11,2024 at 01:06:59 UTC from IEEE Xplore.  Restrictions apply. 



Friday in Fig. 3b can be the result of consecutive rainy condi-
tions illustrated in Fig. 22. In fact, the service providers and
city planners may suspend services during tough weather
(say, the dockless mobility service may be suspended tempo-
rarily or throughout the remainder of the program during
unsafe winter riding conditions in Minneapolis). Therefore,
we further take into account the time (including days of week
and public holidays) as well asmeteorological factors as exter-
nal factors withinGCScoot formulation.

5 GCSCOOT: DYNAMIC LEARNING & FLOW

PREDICTION

Based on the above data analytics, we propose the design of
GCScoot in order to accommodate the complexity in DES
reconfiguration. Specifically, we first present the spatial and
temporal designs in Section 5.1. We then provide the core
graph capsule designs of GCScoot in Section 5.2.

5.1 Spatial and Temporal Designs

We present the spatial and temporal designs in GCScoot as
follows.

Spatial Distance. Since the regions closer in the geographic
space are more likely to be correlated, we form the spatial
correlations which account for mutual distances. Specifi-
cally, we have the spatial distance correlations between
regions i and j in terms of shortest path distance as

ADði; jÞ , 1

1þ spðri; rjÞ : (5)

Spatial POI. To reflect the correlations due to city func-
tionality, we measure the PoI closeness between the feature

vectors Pi and Pj of the two regions based on the cosine sim-
ilarity, which is formally given by

AP ði; jÞ , cos ðPi;PjÞ ¼ Pi � Pj

kPik � kPjk : (6)

Each dimension of Pi corresponds to the number of POIs of
a category within region i.

Temporal Correlation. Some pairs of regions may have cor-
related DES flows due to the users’ similar commute rou-
tines between them. Let T

ðtÞ
i be the set of DES rides starting

from region i at an interval t, i.e.,

T
ðtÞ
i

��� ��� ¼XN
j¼1

tði; jÞðtÞ
��� ���; (7)

which characterizes the overall DES trend starting from i.
To measure the flow correlations, we further define the tem-
poral correlations of DES flows between regions i and j in the
most recent w time intervals, which is formally given by

A	
Cði; jÞ ,

Pt¼k
t¼k�w T

ðtÞ
i

��� ��� � T
ðtÞ
j

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt¼k
t¼k�w T

ðtÞ
i

��� ���2r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt¼k

t¼k�w T
ðtÞ
j

��� ���2r : (8)

In other words, A	
Cði; jÞ increases if the regions i and j have

more similar and concurrent trends of rides.
Spatio-Temporal Connectivity. We have observed that the

DES users usually travel frequently among regions due to
their commute routes and preferences. During rush hours
we observe more frequent travels between work and resi-
dential areas, while recreational and residential areas are
more likely connected during weekends. We show in
Fig. 23 the flow volumes (in log 10ð�Þ) from the start regions
(vertical axis) to the destinations (10 selected regions in Aus-
tin with the maximum DES usage), and we can observe
more diverse DES flows during weekends due to broader
riding purposes.

Consideration of Eq. (8) only cannot comprehensively
reflect the directional dependency between regions. So, we
further integrate the connectivity among regions within our
formulation. Specifically, we first define the proportion of e-
scooter rides tðkÞði; jÞ from regions ri to rj in the time inter-
val k as

aðkÞði; jÞ , tðkÞði; jÞPN
l¼1;l 6¼i t

ðkÞði; lÞ : (9)

Then, we design a vector representing the relative flow pro-
portion, i.e.,

Fig. 21. Region-to-region POI similarities, Chicago.

Fig. 22. Weekend weather conditions for Fig. 3b in Louisville.

Fig. 23. Illustration of connectivities of city regions on Saturday & Mon-
day (Austin).
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~uði; jÞ , aðkÞði; jÞ; 1� aðkÞði; jÞ
h i

; (10)

where aðkÞði; jÞ increases (and 1� aðkÞði; jÞ decreases) if more
rides in i head to j.

Considering the DES network graph G, we adapt the
designs of first-order proximity in the network embed-
ding [47], and design a connectivity metric hði; jÞ for DES
rides between regions i and j as

hði; jÞ , 1

1þ expð�~uði; jÞ �~uðj; iÞÞ ; (11)

where the dot product of the two vectors, ~uði; jÞ �~uðj; iÞ,
increases if two regions have more DES rides heading
towards each other.

As hði; jÞ 2 ð0; 1Þ, we adjust the A	
Cði; jÞ by

ACði; jÞ ¼ A	
Cði; jÞ � hði; jÞ: (12)

In other words, regions i and j are consideredmore correlated
in flows if they have more similar flow dynamics and stronger
mutual flow connectivities. We adopt hði; jÞ 2 ð0; 1Þ as a
weight parameter imposed upon the adjacency/correlation
between regions to adjust their relative importance.

Finally, we have the following adjacency matrix character-
izing the structures of spatio-temporal DES network graph

A ¼ AD;AP ;AC½ �: (13)

Reconfiguration Masking. Due to dynamic reconfiguration,
the DES deployment regions can be activated (introduced) or
deactivated (removed) over the time domain, forming the net-
work graph GðkÞ. To adaptively reflect this in GCScoot’s for-
mulation, for each interval k, we apply a mask operation
mðkÞð�Þ upon each input matrix A? (? denotes D, P or C in
Eq. (13)), where

A0
? ði; :Þ , 0; if region i is deactivated;

A? ði; :Þ � 1; otherwise.

�
(14)

And A0
? ð:; iÞ also applies due to symmetry.

From the government or city planners, we can also obtain
the newly reconfigured regions as Vðkþ1Þ. Then, based on
Vðkþ1Þ and Eq. (14), we activate the regions in the expansion
and deactivate the removed ones, and have the resultant
masked correlations as

A0
D ¼ mðkÞ ADð Þ; A0

P ¼ mðkÞ APð Þ; A0
C ¼ mðkÞ ACð Þ: (15)

These masked correlations will be fed to the graph capsule
network in Section 5.2.

5.2 Graph Capsule Designs

The core framework of the graph capsule network STGCap-

Net within GCScoot includes the following three major
designs: 1) multi-layer graph convolutions: which consist of
multiple graph convolution layers capturing multi-scale
graph features; 2) multi-graph convolution for temporal model-
ing: which incorporates multiple DES network graph in the
past intervals; 3) capsule routing: which consists of primary
and routing capsules to further derive fine-grained graph
features. The core structure is illustrated in Fig. 24.

Graph Convolution. First, we design a multi-scale region fea-
ture extraction with different layers, where the extracted fea-
tures are represented in the form of capsules. Specifically, to
extract the features at the city regions, we apply the graph con-
volution [48]. The formulation framework of the graph convo-
lution is applied upon each region as well as the peers with
trips from/to it, which returns the new representation Zðlþ1Þ 2
RN�d0 of the region features given the inputsZðlÞ 2 RN�d, i.e.,

Zðlþ1Þ , s fðAÞZðlÞWðlÞ
� �

; (16)

where fð�Þ is the N �N matrix generated via aggregation
operation, and WðlÞ 2 Rd�d0 is a trainable weight matrix as a
channel filter.

Since multiple correlation matrices are applied as shown
in Eq. (13), we integrate them within the convolution as fol-
lows. Let W

ðlÞ
ij 2 Rd�d0 be the trainable weight matrix within

the graph convolution layer l 2 f1; . . . ; Lg, and sð�Þ be the
non-linear activation function (we adopt ReLU in our proto-
type). We define the channel filter from all the channels in
the lth layer to the jth channel in the ðlþ 1Þth layer, i.e.,

Z
ðlþ1Þ
j , s

X
~A0
? 2f~A0

D
;~A0

P
;~A0

C
g

X
i

~A?Z
ðlÞ
i W

ðlÞ
ij

0B@
1CA; (17)

where the symmetric normalized Laplacian fð�Þ [48] is
applied upon each of the masked correlations A0

D, A
0
P , A

0
C

in Eq. (15) as

~A? ¼ fðA0
? Þ ¼ eD�1

2
? A0

?
eD�1

2
? ; (18)

Fig. 24. Graph capsule neural network for DES networks (before). Input: multiple spatio-temporal DES network graphs and the corresponding DES
flows; Output: predictions of reconfigured DES flows Fcap.
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and the degree matrix is

eD? ði; iÞ ¼
X
j

A0
? ði; jÞ: (19)

Multi-Graph Convolution for Temporal Modeling. To further
enhance the accuracy and robustness of GCScoot, we have
designed a multi-graph mechanism within the graph neural
network structure of GCScoot. Multiple DES network
graphs in the past W 0 intervals are jointly considered to fur-
ther learn the temporal dependency for the target interval
estimation.

Specifically, we further incorporate the multiple DES net-
work graphs in the sliding time window as the input at the
first layer, which models the dependency as

Zð1Þ ¼ s t
w2 1;...;W 0f g

X
~A0
? 2f~A0

D
;~A0

P
;~A0

C
g
~A?Zð0ÞWð0Þ

0B@
1CA; (20)

where t denotes the aggregation operation for the multiple
input graphs, and we adopt summation operation. Here
Zð0Þ 2 RN�2 represents the input DES flow features, the ini-
tial input of graph feature representation to the entire
GCScoot. Multi-graph convolution helps GCScoot better
model the temporal relationships between the graphs com-
pared to previous single settings [36]. Our experimental
studies in Section 7 will further demonstrate the perfor-
mance improvements.

Capsule Routing. To handle the complexity of the urban
DES network, we introduce within GCScoot the capsule
structures which can better capture the spatial and temporal
DES flow dynamics.

The conventional neural network, including convolu-
tional neural network, usually encodes the structural
properties (say, geographical locations, directions and con-
nections) in a scalar form. They have been identified to
exhibit poor efficiency in preserving the structural proper-
ties of the input object [5]. To address this problem, the cap-
sule network [5], [49], [50] has been proposed to extend the
scalar into a vector such that the structural information can
be preserved more efficiently for better computation and
feature extraction. The features within the capsule network
are represented with capsules, which are a structured group
of neurons forming a vector-like representation for the
inputs.

Specifically, the region features extracted from all the L
graph convolution layers are concatenated into a tensor of
higher dimension, i.e.,

	
Zð1Þ;Zð2Þ; . . . ;ZðL�1Þ;ZðLÞ
; (21)

and fed to the primary capsules. Each layer of graph convo-
lution represents the probability that the entity represented
by the capsule is present in the current input. Let Wc be an
NP �NR weight matrix, Wc

ij be the weight parameter of the
link between capsules i in PC and j in RC, and eij be the cou-
pling coefficients that are determined through the dynamic
routing process.

The dynamic routing process determines the likelihood,
denoted as bij, that a preceding capsule i (i 2 f1; . . . ; NPg)

in primary capsules (PC) should be coupled with a succeed-
ing peer j (j 2 f1; . . . ; NRg) in the routing capsules (RC). For
the succeeding RC, the input sj to a capsule j there is for-
mally given by

sj ¼
X
i

eijûjji: (22)

where the coupling coefficient eij is given by a routing
softmax function applied between the primary capsules
and the routing capsules, i.e.,

eij ¼ expðbijÞP
z expðbizÞ

; (23)

and the prediction vector ûjji represents the link between a
capsule i in PC and j in RC, i.e.,

ûjji ¼ Wc
ijui: (24)

The resultant vector output, denoted as vj, from the cap-
sule j is then given by a squashing function to differenti-
ate the long and short vector inputs, i.e.,

vj ¼
kqjk2

1þ kqjk2
� qj

kqjk
; (25)

via which the long vectors gets mapped towards ones while
the short ones are shrunk towards zeros. The results are fur-
ther used to update bij into b0ij in the next iteration, i.e.,

b0ij ¼ bij þ ûjji � vj: (26)

Through iterations with the Eqs. (22)–(26), the graph cap-
sule network learns the structured features within the input
DES networks.

6 MODULE INTEGRATION & COLD-START

Given the core models, we now present the module integra-
tion in Section 6.1, followed by the model cold-start based
on the clustered regions and virtual data generation in
Section 6.2.

6.1 GCScootModule Integration

The important modules in the GCScoot framework are
integrated as follows.

Graph Capsule Neural Network for DES Networks. We sum-
marize the architecture of the multi-layer graph capsule
neural network as in Fig. 24, where dP and dR are the cap-
sule dimensions in the primary and routing capsules. Multi-
ple graph convolution neural networks first extract the
multi-scale features from the input spatio-temporal DES
network graphs. This way, GCScoot obtains the initial acti-
vation with the spatio-temporal DES network graphs, and
preserve the features of the sub-components of the graphs.
The inputs at the first layer of graph convolution are the
spatio-temporal DES network graphs represented by A and
N � 2 flow matrix FðkÞ, which serves as Zð0Þ. The lower out-
put Zðl�1Þ is fed to the upper layer l.

As illustrated in Fig. 24, we stack multiple graph convo-
lution layers in order to enhance the receptive field of the
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graph convolution operations and better capture the latent
spatio-temporal correlations.

The outputs from all the graph convolutions are further
concatenated and fed to the primary capsules. The results
are then processed by the routing capsules, with dynamic
routing with the preceding primary capsules. At the last
stage, the fully connected neural network (we adopt in our
prototype two dense layers with dimensions of CDen

1 and
CDen

2 ) processes the outputs from the routing capsules and
maps them back to the reconfigured DES flows Fcap 2 RN 0�2.

Dense Network for External Factors. The external factors
including weather conditions (we adopt 5 typical dimensions
in our prototype, i.e., temperature in Fahrenheit, sunny or
not, rainy or not, cloudy or not, snowy or not, as shown in
Fig. 22), day of a week and hour of a day are concatenated
together into a vector. The vector is then fed to a multi-layer
fully-connected neural network in Fig. 25 in order to integrate
external factors related to DES mobility. Two fully-connected
neural networks (with output dimensions of CExt

1 and CExt
2 )

with ReLU activation function between them are adopted
here. This component returns Fden 2 RN 0�2.

Finally, given the predictions of reconfigured DES flows
Fcap and Fden from the graph capsule neural network as well
as the dense network, GCScootmerges and averages the pre-
dicted flows at target interval ðkþ 1Þ as in Fig. 2, and returns
the final results for the city planners and service providers.
The proposed model can be dynamically updated over the
timewith newdeployment data if available.

6.2 Region Clustering & Virtual Data Generation

For regions without any historical datasets, how to enhance
the training and prediction accuracy remains a critical issue.
To further mitigate the cold-start influence and enhance the
model adaptability, we have designed an efficient and effec-
tive model cold-start approach with the short-term virtual
trip data generated from the regions with similar neighbor-
hood trip patterns.

Specifically, the designs of dataset generation and model
cold-start consist of the following steps:

1) Region clustering: Geographically close regions with
the similar neighborhood spatial features tend to
have similar DES flows. So, we consider finding the
spatially similar old regions for each new one as
the basis for virtual trip generation. We leverage the
region-to-region POI similarities (Eq. (6)) as the spa-
tial correlations between the new regions and those
old ones, and cluster the regions into multiple region
groups. Then, we generate the virtual trips of a new
region based upon its peer old regions with histori-
cal datasets in the same cluster.

In particular, the POI similarities of the regions
are fed to the affinity propagation clustering algo-
rithm [51] which does not need specification of the
number of clusters like the conventional k-means
clustering [52]. We further illustrate the clustered
regions in Austin (August, 2018) and Chicago (July,
2019) in Figs. 26 and 27, where 10 and 12 clusters of
regions have been respectively discovered and
generated.

2) Virtual data generation: We take into account the spa-
tial correlations, since geographically close regions
tend to have similar flow patterns. For each new
region i at time interval k, each flow record of the vir-
tual time series (pick-ups or drop-offs) is generated
based on those of the N 0 (N 0 
 N) disjoint regions
with the shortest geographic distances from it within
the cluster, i.e.,

eFðkÞi ¼
XN 0

j¼1

vjF
ðkÞ
j ; k 2 1; . . . ; Kf g; (27)

where K is the number of time intervals in a time
window before the reconfiguration, and the normal-
ized weight vj is given by

vj ¼ 1

distðri; rjÞ
� � XN 0

j¼1

1

distðri; rjÞ

 !
; (28)

where distðri; rjÞ is the geographic distance between
region i and its neighbor j (unit: km). In this paper,
we consider N 0 as the number of other regions in
the assigned cluster with the minimum value of 5.
We adopt the virtual trips in a short-term period
(say, 12 hours; K ¼ 12 for Chicago or K ¼ 24 for

Fig. 25. Dense neural network for external factor processing.

Fig. 26. Clustered DES regions in Austin, TX (by Aug, 2018).

Fig. 27. Clustered DES regions in Chicago, IL (by July, 2019).
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other datasets) before the reconfiguration for the
model initialization of GCScoot, considering the
data recency and computational efficiency.

3) Model training initialization: Given the short-term vir-
tual trips, we combine them with the historical trips,
and further train the GCScootmodel before the
reconfiguration. We activate the elements in A
(Eq. (14)) when training GCScoot upon the gener-
ated data in order to enable the graph convolution to
characterize the region-to-region correlations.

The DES service provider can in practice conduct the above
processing before each reconfiguration. When the reconfig-
ured regions are decided and the real historical trips are fed
to replace the virtual ones, GCScoot can be further updated
with the new data for the following forecast.

7 EXPERIMENTAL EVALUATION

We first describe the experimental settings in Section 7.1
and then present the experimental results in Section 7.2.

7.1 Experimental Settings

We compare GCScoot with the following traditional and
state-of-the-art methods:

1) HA and SHA: which estimate the DES flows via the
historical average and seasonal historical average.
For example, HA (or SHA) predicts the flow volume
at 10:00am – 11:00am of a Monday by averaging the
flows of all Mondays (or all Mondays in the same
season).

2) LSTM: which estimates the DES flows based on the
long short-term memory.

3) RNN: which predicts the time series of the DES flows
based on recurrent neural network [53].

4) STCNN: which models the DES flows via spatio-
temporal convolutional neural network [23].

5) MGCN: which estimates the flows through multi-
graph convolutional neural network [27].

6) GWN: which leverages the graph wavenet for the
traffic flow prediction [29].

7) STGCN: which leverages the spatial and temporal
graph convolutional neural network [25].

8) MTL: which adaptively predicts the DES flows via
spatio-temporal convolutional neural network and
meta-learning [30], [54].

9) FA+CNN: which adapts the domains of the previous
DES flows with factor analysis and predicts the
transformed traffics with convolutional neural
network [34].

10) DANN: which predicts and adapts to the dynamic
flows via convolutional neural network with domain
adaptation [35], [55].

11) MSGN: which adaptively learns and forecasts
the traffic flows with the multi-scale graph neural
network [56].

We also compare the performance of the current version
(labeled as GCScoot-2.0) with the GCScoot in the confer-
ence version [36] (denoted as GCScoot-1.0), to demonstrate
the difference and improvement. Unless otherwise stated,
we use GCScoot to represent the latest version.

Our experimentation has been done on a desktop server
with Intel i7-8700K 3.70 GHz, 32GB RAM and Nvidia GTX
1080Ti (11 GB GDDR5). All algorithms are implemented
through Python 3.6.5 with Tensorflow/Keras/PyTorch. As
for the quantity offsets of e-scooters after reconfiguration,
we adjust the predictions based on the number of deployed
e-scooters based on the government statistics.

Unless otherwise stated, we use the following parame-
ters by default. For Austin, Louisville and Minneapolis, we
adopt a temporal discretization interval of 30 min as it is the
minimum interval for the meteorological datasets, and set
w ¼ 12 for Eq. (8) which is equal to 6 hours. For Chicago, we
are given 60 min granularity processed by the Chicago
Department of Transportation (DOT), and hence 12-hour
trips are used for Eq. (8). In the map preprocessing, we
observe that a large grid eases prediction and computation
but lowers the granularity, while a small grid introduces
higher degree of correlations and computational overheads.
To balance these, like the discretization in [30], [57], we eval-
uate the grid settings and discretize the maps of Austin,
Louisville, Minneapolis and Chicago into 32�32, 25�13,
11�11 and 15�15 grid maps, respectively. The map discreti-
zation takes into account the shape of the city area as well
as coverage of DES deployment, and ensures that the aver-
age DES pick-ups/drop-offs of all deployment grids (with
nonzero usage) are at least 100.

We adopt L ¼ 5 graph convolution layers, and leverage
W 0 ¼ 6 latest consecutive DES network graphs to incorpo-
rate the temporal dependency. The output dimensions (d0)
for each layer are set to f100; 600; 100; 600; 100g for Zð1Þ to
Zð5Þ, and the important network parameters in STGCapNet

are set as

fNP ; dP ;NR; dR; CDen
1 ; CDen

2 ;CExt
1 ; CExt

2 g ¼
f10; 60; 10; 60; 16; 2; 16; 2g:

We set the default number of dynamic routing in STGCap-

Net to 4, and the number of epochs to 200. Adam optimizer
is used with a learning rate of 0.01. For the CNN in STCNN,
FA+CNN and MTL, we set the number of filters to 64. The
number of steps and dimensions of hidden states in LSTM
are 6 and 12, respectively.

For our experimental settings, we consider a significant
reconfiguration happens if at least 10 percent of deployment
regions in the 7 days onward have changed (introduced or
removed). In total, we have identified 21 reconfigurations in
Austin, 22 in Louisville, 9 in Minneapolis, 4 in Chicago in
the four datasets. For each city, for GCScoot we conduct
the model sensitivity studies upon the first 30 days’ samples
(first 80 percent for initial model training and 20 percent for
validation), and use the rest for overall prediction perfor-
mance comparison. For each dataset, we train GCScoot and
other models with domain adaptation or transfer (MSGN,
DANN, FA+CNN and MTL) based on the samples of 7
days before the reconfiguration happens, and test the mod-
els upon those samples between this reconfiguration and
the next. For other schemes without adaptation, we use the
historical records for flow prediction.

We comprehensively evaluate the performance of all
schemes based on the root mean square error (RMSE)
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KN

XN
i¼1

XK
k¼1

F
ðkÞ
i � bFðkÞi

� �2vuut ; (29)

mean absolute error (MAE)

MAE ¼ 1

KN

XN
i¼1

XK
k¼1

F
ðkÞ
i � bFðkÞi

��� ���; (30)

and error rate (ER) (which follows [58]; used in sensitivity
studies)

ER ¼ 1

K

XK
k¼1

PN
i¼1 F

ðkÞ
i � bFðkÞi

��� ���PN
i¼1 F

ðkÞ
i

; (31)

whereN andK are the numbers of regions and time intervals,
and F

ðkÞ
i and bFðkÞi are the actual and predictedDES flows.

7.2 Experimental Results

Prediction Performance Comparison. We present the overall
prediction results and evaluate the performance variations
under different data settings.

Overall Prediction Performance.We first present in Fig. 28 the
experimental results of performance on each of the four data-
sets. Without proper spatial feature adaptation, conventional
time-series schemes like HA, SHA, LSTM and RNN cannot
accommodate the spatial correlations between regions aswell
as their reconfiguration, resulting in lower prediction accu-
racy. STCNN, MGCN, GWN and STGCN focus on the influ-
ence of spatial features upon the temporal flows. However,
these approaches have not considered the dynamically recon-
figured regions in their settings, and hence cannot adapt well
to the reconfigured regions. FA+CNN and DANN focus on
the domain studies, and MSGN considers the region-to-
region connections. GCScoot achieves higher accuracy than
the above three approaches, thanks to itsmore comprehensive
modeling of theDES flows and fine-grained feature extraction
via the graph capsule network.

We also observe the performance variations of these
schemes for different datasets. All of the schemes suffer

higher errors in Chicago and Austin than other two data-
sets, due to higher volumes of usage and more complex
DES usage. GCScoot-2.0 makes at least 63.14, 39.74, 27.27
and 33.12 percent improvements over the state-of-the-arts
w.r.t. the four datasets. Compared to GCScoot-1.0, the pro-
posed new designs and components are shown to improve
the accuracy by 7.25 to 44.24 percent in all the four datasets
we have evaluated.

Predictions on New & Existing Regions. By focusing on the
new and existing (V \V0) regions after the reconfigurations,
we further show in Table 2 the performance on the four
datasets. Specifically, we show the RMSE of the schemes
GCScoot-2.0, GCScoot-1.0, MSGN, DANN and FA+CNN.
Forecasting dynamic flows regarding the new regions is
more challenging due to the absence of historical data. Both
GCScoot-2.0 and GCScoot-1.0 are shown to outperform
the other schemes in predicting the flows from both the new
and existing regions, demonstrating GCScoot’s high ada-
patability to the DES reconfiguration. Thanks to the pro-
posed new multi-graph and virtual data designs, GCScoot-
2.0 improves the accuracy over GCScoot-1.0 for the new
regions by 10.90 percent on average in the datasets we have
studied, and outperforms the state-of-the-arts by at least
23.19 percent based on the results.

Predictions on Rush Hours and Weekends. By focusing on the
morning/evening rush hours (RH: 08:00 am - 10:00am; 05:00
pm - 07:00 pm) and weekends (Saturdays and Sundays), we
show in Table 3 the performance of GCScoot-2.0, GCScoot-
1.0 and the other four schemes for the four datasets. Note that
mobility prediction during rush hours can be challenging due
to high and dense traffic volumes, while diverse travel pur-
poses at the weekends render the accurate forecast rather dif-
ficult. We can see that both GCScoot-2.0 and GCScoot-1.0
outperform the other state-of-the-arts in predicting the flows
due to their higher adaptivity to the DES traffic flows. On
average, GCScoot-2.0 outperforms GCScoot-1.0 by 14.72
percent in terms of predicting rush-hour flows, and by 17.47
percent in terms ofweekend distributions.

Model Sensitivity Analysis. After presenting the overall per-
formance upon the four datasets, we evaluate the model sen-
sitivity of GCScoot (we focus on GCScoot-2.0 in the

Fig. 28. Overall performance of all schemes in the four datasets: (a) Austin; (b) Louisville; (c) Minneapolis; (d) Chicago.
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following due to its better performance) to variations in
spatial/temporal/external factors/components, dynamic rou-
tings, grid sizes, multi-graph mechanism and number of
samples (in terms of days) for model training. This sensitivity
has been studied on the first 30 days’ samples (total 720
time intervals for Chicago and 1,440 for others) for each
dataset, and we show the results upon the validation data
(Section 7.1).

Important Modules. Taking Austin dataset as an example,
we first show in Fig. 29 GCScoot’s performance (RMSE and
MAE) with and without each of the spatial and temporal
correlations as well as the external/temporal factors. Specif-
ically, we show the RMSEs and MAEs of GCScoot (w/ all)
and its variations: without distances (w/o dist), flow corre-
lations (w/o flow corr), POIs (w/o POIs), weather (w/o
weather), fusion with dense network processing the exter-
nal factors (w/o ext), multi-graph mechanism (w/o multi)

and virtual data generation (w/o virtual). By incorporating
the aforementioned factors, GCScoot is shown to be able to
adaptively predict the reconfigured DES flows.

Dynamic Routing. We also present in Fig. 30 the perfor-
mance (RMSE and MAE) of GCScoot versus the number of
dynamic routings. More dynamic routings generally help
GCScoot capture more DES flow correlations among the
regions, and hence better accuracy. The improvement via
more routings and iterations begins to converge after intro-
ducing more routings. Therefore, we set the default number
of dynamic routings to 4 in our experimental studies.

Map Discretization. We evaluate GCScoot’s performance
(RMSE, MAE and ER) while varying the grid sizes and
map discretization in Fig. 31. Specifically, we evaluate the
map discretization of 16�16, 32�32, 48�48 and 64�64.
We can observe that as the number of grids increases, the
errors of GCScoot tend to grow, mainly because the matrix

TABLE 3
RMSE on the Rush Hours & Weekends at the Four Cities

Schemes Austin Louisville Minneapolis Chicago

RH Weekends RH Weekends RH Weekends RH Weekends

GCScoot-2.0 2.84 2.22 2.85 2.45 1.52 1.42 3.74 4.61

GCScoot-1.0 3.12 2.63 2.92 3.03 1.81 2.04 5.46 4.40

MSGN 5.83 5.57 5.26 5.89 3.35 3.74 5.64 5.77

DANN 5.54 5.32 6.55 6.73 3.66 3.46 5.17 7.33

MTL 5.21 5.74 6.22 6.83 5.08 4.72 6.21 6.13

FA+CNN 6.11 5.90 6.18 6.22 5.84 5.14 7.32 8.19

Fig. 29. Performance of GCScoot w/ and w/o the components & designs
(Austin).

TABLE 2
RMSE Regarding the New and Existing Regions During Reconfiguration Periods of the Four Cities

Schemes Austin Louisville Minneapolis Chicago

New Existing New Existing New Existing New Existing

GCScoot-2.0 3.04 1.73 3.29 1.71 2.14 1.26 3.71 2.75

GCScoot-1.0 3.88 2.04 3.45 1.88 2.18 1.31 4.39 2.98

MSGN 5.90 3.87 5.13 2.89 3.43 1.52 4.83 3.23

DANN 6.11 4.44 6.54 2.73 3.52 2.19 5.27 3.81

MTL 7.30 4.26 6.11 3.87 5.29 3.45 6.13 4.50

FA+CNN 7.51 4.82 6.34 3.99 5.18 3.14 6.92 4.73

Fig. 30. Performance of GCScoot versus numbers of dynamic routings
(Austin).
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representing the region-to-region correlation grows signifi-
cantly with the number of grids, making it difficult for the
model to learn the flow features further. To enable efficient
computation and maintain the granularity of the estimation,
we choose 32�32 for Austin.

Time Discretization. We have further conducted experi-
mental studies on the Austin dataset regarding the effect of
time discretization in Fig. 32. We set each interval as 0.5, 1,
1.5 and 2 h, and show GCScoot’s performance in terms of
RMSE, MAE and ER. Given larger time discretization, a
slight increase of errors can be observed, while, overall,
GCScoot is less sensitive to the time discretization than the
map discretization in Fig. 31.

Multi-Graph Settings. Taking Austin and Chicago as exam-
ples, we further show the performance (RMSE as well as ER)
of GCScoot’s multi-graph mechanism versus the number of
flows (W 0 in Eq. (20)) in Fig. 33. We can observe that the accu-
racy of GCScoot increases with respect to the number of
flows, mainly becausemore flow features can be learned from
more historical data. However, the improvement diminishes

after a few more time intervals (say, 6 or 7 in our provided
cases) are fed, which is likely due to more random trip pat-
terns included in a longer period of time. Therefore, we set
W 0 ¼ 6 consecutive time intervals by default in our experi-
mental studies.

Number of Training Samples. We show in Fig. 34 the perfor-
mance (RMSEs) of GCScoot, MSGN, DANN, MTL and FA+
CNN given only 1, 3 and 5 days of the training samples with
respect to each of the four datasets. Fewer training data poses
more challenges to all the schemes, which also represents the
common practice when only a few pilot studies have been
done before reconfiguration. Viamore comprehensive feature
learning based on the graph capsule neural network,
GCScoot still outperforms all the baselines. Thisway, the city
planners and service providers may be able to conduct proac-
tive flow studies in the DES initialization.

Adaptive Cold-Start Mechanism. We have conducted further
studies regarding the performance (RMSE and MAE) of
GCScootwhile varying the length of virtual trips (4, 8, 12 and
16 h) in the cold-start mechanism. One can see from Fig. 35
that the RMSE and MAE of GCScoot tend to decrease as
more time intervals of virtual trips are involved. However, as
more intervals are included, the long-term virtual trips may
not necessarily characterize the short-term dynamics due to
the last-mile nature of the DES flows. Based on this trade-off,
we set 12 hours in our default settings.

Effect of Reconfiguration Ratios. We have also parsed the
dataset and shown the performance (RMSE and MAE) of
GCScoot in Fig. 36 under different reconfiguration ratios

Fig. 31. Performance of GCScoot versus the number of grids (Austin).

Fig. 32. Performance of GCScoot versus time discretization (Austin).

Fig. 33. Performance of GCScoot versus numbers of flows: (a) Austin; (b) Chicago.

Fig. 34. Performance of the schemes versus the numbers of training
samples in the four datasets.
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(Section 7.1). In particular, we studied the RMSE and MAE
in the reconfigured regions in terms of following ratios:
½0:1; 0:15Þ, ½0:15; 0:2Þ, ½0:2; 0:25Þ and ½0:25;1Þ in Austin. One
can see that the prediction error generally increases as the
reconfiguration ratio rises. In practice, we have observed
that more than 81 percent of the reconfiguration operations
have ratios of less than 0.25, and hence GCScoot can main-
tain overall reasonable prediction accuracy in real-world
deployment.

Training Time Comparison. We briefly summarize and dis-
cuss the training time and computational efficiency (based
on our machine in Section 7.1). The training time of
GCScoot for Austin, Louisville, Minneapolis and Chicago
is around 5, 1.1, 0.5 and 0.68 h. Compared to GCScoot in
these four cities, MTL takes around 4, 2.5, 0.8 and 0.8 h; FA+
CNN takes around 3.5, 0.8, 0.2 and 0.3 h due to the simplic-
ity of the model; DANN takes around 5.1, 0.8, 0.5 and 0.5 h;
MSGN takes around 5.5, 1, 0.5 and 0.8 h. Due to larger DES
volumes, all schemes generally need a longer training time
for the Austin and Louisville datasets than the other two.
Further model efficiency enhancement and training acceler-
ation of GCScootwill be part of our future work.

Comparison With Bike Sharing. We have briefly compared
the DES and the bike sharing system (B-Cycle) in Austin.
We conduct the experimental studies upon the DES and
bike sharing datasets collected in May 2019. The spatial and
temporal discretizations of bike sharing flows follow the
same settings as DES (Section 7.1). From Fig. 37, we can see
that predicting DES flows is overall more challenging com-
pared with bike sharing, due to the higher degree of free-
dom in maneuvering (Section 4.1) and user behavioral
difference (say, preferred escooters for leisure use [59],
[60]). Further investigation on user behaviors will be consid-
ered in our future work.

8 DEPLOYMENT DISCUSSION

In this section, we further provide some discussion regard-
ing the deployment, and provide future research direction:

Inclusion of Other Data Sources. Due to the resource con-
straints and early stage of DES deployment, there exist many
other factors influencing the DES distribution [61], including
demographic distributions, which have not been discussed
in this work [11]. With the increasing community acceptance
and deployments, the related DES studies are expected to be
supported by more available data sources. While our experi-
mental studies focus on spatial, temporal and external fac-
tors including meteorological data, GCScoot is general
enough to accommodate other factors (including satellite
images [34], local traffic [62] and demographic information)
to enhance the accuracy further.

Urban Environment Impact & Abnormal City Events. While
our current studies consider how the external factors like
POI region correlations, weather and time events like holi-
days influence scooter traffic, it would be interesting to study
the (positive/negative) effects of DES deployment upon the
urban environment [2], including pollutant levels of road
network [63], traffics of other transportation systems, resul-
tant congestion levels of sidewalks and vehicle parking avail-
ability [41]. Furthermore, abnormal city events, including
illegal parking, crimes or city shutdown during pandemics
like COVID-19,6 could significantly impact DES deployment,
which requires multi-disciplinary efforts as related sources
become available [64].

9 CONCLUSION

In this paper, we have studied the dynamic mobility pat-
terns of dockless e-scooter sharing (DES) systems due to the
deployment reconfiguration (expansion and shrinkage of
the covered regions). We have proposed a novel system
framework called GCScoot for dynamic distribution pre-
diction of DES reconfiguration. Via data-driven studies
upon the DES data, we have analyzed various spatial and
temporal factors related to the DES flows, including e-
scooter flow dynamics, distances and region connectivities.
Taking the analysis results into account, we have proposed
a novel spatio-temporal graph capsule neural network, with
multi-graph designs fusing the flows of consecutive time
intervals, which comprehensively and adaptively forecasts

Fig. 35. Sensitivity of adaptive cold-start mechanism (Austin).

Fig. 36. Effect of reconfiguration ratios (Austin).

Fig. 37. Performance comparison on DES & bike sharing (Austin).

6. https://www.theverge.com/2020/3/20/21188119/electric-scooter-
coronavirus-bird-lime-spin-suspend-bikes, Accessed:May-2020.
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the resultant e-scooter flows given the altered deployment
regions. To enhance GCScoot’s adaptability towards the new
regions, we have further designed an efficient region cluster-
ing andmodel cold-start approach. We have conducted exten-
sive experimental evaluation upon four different e-scooter
datasets in four populous US cities which consist of total more
than 3million trips, showing that GCScoot outperforms state-
of-the-arts and is effective and accurate in forecasting e-scooter
mobility and flows after reconfiguration.
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