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Incentivizing Platform–User Interactions
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Abstract—For effective crowdsensing, it is essential to incen-
tivize the interactions of participants and platforms. Existing
approaches do not tailor users’ bidding to their preferences,
i.e., personalized bidding (PB). To meet this need, we design
an incentive mechanism, called Picasso, that achieves not only
the expressiveness and description efficiency of PB for users, but
also minimal social cost, computational efficiency, and strategy
proof for platform owners. This design is, however, challeng-
ing due to the intrinsic conflicting goals of the platform owner
and users. To handle these conflicts, Picasso represents bids in a
novel 3-D expression space by orchestrating three logical opera-
tions to balance among expressiveness, computational complexity,
and description efficiency. Moreover, we equivalently decompose
and recombine the complex task dependencies of bids originated
from the expressiveness of PB, thus achieving a constant-factor
approximation of optimal task allocation with strategy proof in
polynomial time. These properties of Picasso are proven theoret-
ically. In addition to a detailed simulation study, our trace-driven
evaluations show that, compared to existing approaches, Picasso
can enable each user to bid 9.7× more tasks, on average, and
decrease the description length by 74%, thus encouraging more
users’ participation. Picasso also reduces the platform owner’s
payment by more than 61%, hence yielding a win–win solution
for incentivizing platform–user interactions.

Index Terms—Auction model, crowdsensing, incentive
mechanism.

I. INTRODUCTION

THE POTENTIAL of crowds and pervasiveness of mobile
devices have made crowdsensing increasingly popular
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Fig. 1. Incentivization of platform–user interactions with win–win benefits
using Picasso.

and attractive, yielding numerous crowdsensing systems and
platforms [21], [41], [43], such as Crowdsensing Map [44],
Amazon Mechanical Turk, and Gigwalk.1 The success of
crowdsensing hinges on interactions between the platform (or
the platform owner) and the crowdsensing participants [39].
It is, therefore, essential to incentivize the interactions of
participants and platforms as witnessed from various propos-
als [22], [48], [51].

Of existing incentive mechanisms, the auction model has
been widely studied as it increases competitiveness among
bidding participants and incentivizes them better [12], [36].
Users bid for published tasks according to their preferences
in describing bids, and then the platform uses certain criteria
to allocate task(s) to each user. In practice, users have diverse
preferences in bidding for a combination of tasks, owing to the
differences in their in-situ context, interest, location, available
time, etc., [11]. For example, two users, Lucy and Bob, are
interested in bidding for the same N tasks, but Lucy prefers
only one of them due to her limited availability of time, while
Bob with enough time wants any subset of these N tasks.

Enabling users’ bidding tailored to their personal prefer-
ences, called personalized bidding (PB) [34], is key to incen-
tivizing crowdsensing with benefits to both the participants and
the platform owner. According to a recent survey [2] of over
1500 users between the ages of 18 and 60, more than 56% of
them prefer a service with personalized experience. In other
words, PB can encourage the users to participate in crowd-
sensing by accommodating their personal preferences, raising
the intrinsic motivation of psychological factors [9], [37].
Furthermore, users can be motivated to bid for more tasks for
higher utility, promoting the competition among users, which,
in return, reduces the platform’s cost/payment.

1http://www.gigwalk.com/
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However, prior work only focused on the design of task allo-
cation with the minimum social cost, computational efficiency,
and strategy proof, all from the platform’s perspective with-
out considering the users’ preference of PB [36]. On the one
hand, most studies [27], [32], [49], [53] used single-minded
bids, which cannot express the users’ diverse preferences in
PB [23]. For example, these single-minded bids, which let
participants bid for either the bundle of all tasks or noth-
ing [24], [49], do not allow Lucy to express her preference
for a combination of tasks. Thus, they cannot support the
expressiveness of PB, i.e., the ability that a mechanism allows
users to express all possible task combinations in their bids.
On the other hand, a few researchers [15], [23], [50] have
recently considered the users’ expressiveness by using multi-
minded bids. Nevertheless, they do not satisfy expressiveness
or description efficiency of PB from the user’s perspective.

To fill this gap, as illustrated in Fig. 1, we propose a
comprehensive incentive mechanism that achieves 1) expres-
siveness and 2) description efficiency of PB in describing
users’ bids; 3) minimal social cost; 4) computational effi-
ciency; and 5) strategy proof in the platform owner’s allocation
of tasks to the users [15], [50]. However, it is very challenging
to achieve all of these simultaneously due to the intrinsically
conflicting goals of the platform owner and participants.

1) Chg1. (Describing Bids): PB’s expressiveness enables a
much larger space of candidate task allocations due to
the increasing number of task bids (i.e., task bundles),
at the expense of significantly higher computational
complexity for the optimal task allocation. Moreover,
the required bidding flexibility via PB’s expressive-
ness lengthens the users’ bid descriptions, rendering
them inefficient to use. Hence, it is difficult to achieve
expressiveness without degrading description efficiency.

2) Chg2. (Allocating Tasks): Various bidding options owing
to expressiveness add more complex constraints upon the
allocation of different tasks to users, called task depen-
dency, making it difficult to solve the task-allocation
problem for minimizing social cost. This problem is
proved to be NP-hard in Section III-D. Moreover, such
dependency can be abused by selfish users to strategi-
cally misreport and manipulate for higher utility, making
the task allocation less strategy proof.

To address these two challenges, we propose a novel incen-
tive mechanism for crowdsensing, called Picasso.2 As shown
in Fig. 1, in contrast to prior work, Picasso achieves all five
features 1)–5) from the perspectives of both the platform and
users in the following two key steps.

To address Chg1, in Section IV-A, we build a formal
framework of bid description in 3-D expressive space by com-
bining three logical operations, i.e., AND, XOR, and OR.
Furthermore, based on this framework, a new PB descrip-
tion method is proposed to achieve an excellent balance
among expressiveness, computational complexity, and descrip-
tion efficiency.

2Like the Cubist painting pioneered by Pablo Picasso, we describe the bids
in 3-D space by decomposing and recombining the graph.

To address Chg2, in Section IV-B, we first construct a
task dependency graph to model the dependencies of task
allocations in a user’s PB. Then, by jointly considering the
relationships among the logical operations, we decompose the
complex graph of a user’s PB into multiple subgraphs of inde-
pendent single-minded bids for more tractable task allocation.
Moreover, we recombine such subgraphs of a user to design
an adaptive critical-payment computation scheme, preventing
users’ strategic exploitation of task dependencies for high util-
ity. Finally, the above properties of Picasso are evaluated via
theoretical analyses in Section IV and trace-based Gigwalk
case studies in Section V.

In summary, this article makes three main contributions
given as follows.

1) Design of a comprehensive framework for describing
users’ bids and generalizing prior work. Based on this
framework, a new PB description method is devised
by leveraging a 3-D expression space with orchestra-
tion of AND, XOR, and OR, achieving a good trade-off
among expressiveness, computational complexity, and
description efficiency.

2) Design of a dependency-aware task allocation algorithm,
achieving constant-factor approximation and strategy
proof in polynomial time by decomposing and then
recombining the task dependency graph.

3) Extensive theoretical analyses and trace-driven Gigwalk
case studies to evaluate the performance of Picasso.
Our trace-driven evaluations show that unlike existing
approaches [15], [27], [50], Picasso enables each user
to bid for 9.7x more tasks, on average, and decrease
the description length by 74%, encouraging more user
participation. As a result, it reduces the social cost and
the platform’s payment by more than 60% and 61%,
respectively. That is, Picasso provides a win–win solu-
tion to incentivize interactions between the users and the
platform owner, promoting long-term crowdsensing.

The remainder of this article is organized as follows. First,
we discuss the related work in Section II, then state the system
model and formalize the problem in Section III. We also
propose an incentive mechanism called Picasso along with
theoretical analyses in Section IV. In Section V, we conduct
traces-driven evaluations, followed by discussing influenced
factors in Section VI and concluding remarks in Section VII.

II. RELATED WORK

Overview: There have been numerous studies of incen-
tivized crowdsensing [47], [51], most of which use the reverse
auction model [13], [36]. As Picasso falls into this cate-
gory, we focus on reviewing its related studies in terms
of users’ bids, classified as single-minded and multiminded
bids [19], [30], [50]. Other orthogonal studies, such as the
posted-pricing model [20], [35], can be found in [36] and [51].

Single-Minded Bids: From the platform’s perspective, most
existing studies are based on single-minded bids (SMB) due
to ease of design, and focus on task allocation. For example,
many of them aim at maximizing the platform’s profit [32] or
achieving constant-factor approximation [27] subject to other
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TABLE I
COMPARISON BETWEEN OUR WORK AND EXISTING WORKS FROM THE PERSPECTIVES OF PLATFORM AND USERS

constraints, such as computational efficiency [7], [53], strategy
proof [38], [49], quality constraint [27], budget limitation [53],
or social network [29], [31], [40], [46]. Despite their reported
promising results for the platform, all of them are based
on single-minded bids, i.e., each user is allowed to select
one bundle of tasks in a “win all or nothing” fashion [19].
Thus, they fail to consider users’ diverse preferences for task
bundling [42]. Without diversified bid design [19], they can-
not satisfy the design goal of expressiveness, thus discouraging
users’ participation by decreasing psychological intrinsic moti-
vations [9], [17]. In contrast, from the users’ perspectives,
Picasso caters for the user’s diverse bids in terms of their
social and psychological differences [37]. Picasso is comple-
mentary to these state-of-the-arts, and can further incentivize
the users with both extrinsic and intrinsic motivations [9].

Multiminded Bids: Recently, a few researchers [15], [19],
[23], [30], [50] considered multiminded bids in design-
ing incentive mechanisms from the perspective of users.
Han et al. [19] focused on the posted-pricing model, which
is bid-independent. Hence, it is inapplicable to our scenarios
based on the bid-dependent auction model [19]. Lin et al. [30]
focused on the protection of user privacy and security attack,
which is orthogonal to our work.

One line of prior works [15], [23], [50], highly related to
this article, investigates the design of incentive mechanisms
with multiminded bids in the auction model. Feng et al. [15]
designed the TRAC mechanism, where each user can submit
multiple disjoint bids, and get any subset of them. We general-
ize it to the Single-OR-Bidding (SOB) model, which is proved
to be inexpressive (Section IV-A2). Although QoI-MRC [23]
and IMC-SM [50] can satisfy the user’s expressiveness, they
neglect the impact of multiminded bids on the allocation of
tasks and payments. For example, QoI-MRC is untruthful for
payment allocation, while IMC-SM cannot achieve guaran-
teed near-optimal social cost in task allocation. Moreover,
their designs [23], [50], as a special case of the Single-XOR-
Bidding (SXB) model, are proved to be description-inefficient
with exponential length. In contrast, we build a generic
framework of bid description which easily accommodates
these results [15], [23], [50]. Based on this framework, we
design a novel bid description scheme, decreasing the descrip-
tion length to polynomial complexity. Moreover, we propose
a new task allocation algorithm, achieving constant-factor
suboptimization and truthfulness in polynomial time.

In addition, researchers [5], [6], [28] studied the bidding
language of combinatorial auction, based on which bidders

Fig. 2. System model of incentive mechanism with design goals.

express their complex preferences on bundles of expected
tasks. They focus on either the expressiveness to exhaustively
elicits user’s preferences [28] or the description efficiency
which promotes user-friendliness and communication [6].
Instead of studying the bidding language independently, our
work jointly considers the relationship between its design and
task allocation in crowdsensing scenarios. It is fed back to
refine the bid description scheme to balance the features of
platform and users.

Summary: As summarized in Table I, in comparison with
existing approaches, Picasso is a novel incentive mechanism
from the perspectives of both the platform and users ful-
filling all the five important features. With such “win–win”
benefits, Picasso augments the platform–user interaction and
incentivizes the entire crowdsensing, promoting the long-term
development of the crowdsensing community [48].

III. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce the system model of the auction-based
incentive mechanism, followed by giving a toy example of PB
in Gigwalk. We then formulate the mechanism design problem
with perspectives of both users and platform owner. Finally,
this problem is theoretically proved to be NP-hard.

A. System Model

Fig. 2 illustrates the general model for the incentive mech-
anism of crowdsensing, whose workflow consists of the
following three phases.
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TABLE II
FREQUENTLY USED NOTATIONS

Step 1 (Task Publishing): The platform publishes sens-
ing tasks to the crowd of users who might be interested in
this crowdsensing campaign. Let T be the set of tasks, i.e.,
T = {τj|j ∈ {1, . . . , M}}, where τj and M denote the jth task
and the number of tasks, respectively. For each τj, there is
a corresponding valuation vj > 0. Assume there are N users
interested in the tasks, and let U = {ui|i ∈ {1, . . . , N}} denote
the set of users.

Step 2 (Task Bidding): According to the description method,
each user ui makes her/his PB for those tasks based on
their preference ri, including the tasks they want to per-
form and the desired payments. We define the PB of ui as
Bi = {bi,k|bi,k = (Ti,k, ai,k), k ∈ {1, . . . , δi}}, where bi,k and
δi denote the atomic bid of ui as Definition 1 and the number
of atomic bids, respectively. Finally, they send the PBs to the
platform.

Definition [Atomic bid, also called single-minded bid
(SMB)]: A user can submit a bid bi,k = (Ti,k, ai,k), where
Ti,k is a subset of tasks (i.e., Ti,k ⊆ T ) and ai,k is the desired
payment for executing these tasks. The user may execute all
the tasks in Ti,k with the payment ai,k, or not execute any task
with no payment. Such a bid is said to be atomic, i.e., the
basic unit of bid description.

In addition to the desired payment ai,k, ui incurs a real cost
ci,k of executing Ti,k, which is in practice private information
and only known to herself/himself. Due to the human’s self-
ishness and rationality, users prefer not to ask for their real
costs in the bids so as to earn more. Hence ci,k ≤ ai,k.

Steps 3–5 (Allocation, Execution, and Payment of Tasks):
Based on their bids (i.e., {Bi|i = 1, . . . , N}), the platform
determines the set of allocated tasks Si and the payment pi

for ui, according to the task allocation and the payment rules
(step 3). Note that Si = ⋃δi

k=1 Si,k, where Si,k denotes the set
of task allocation for Ti,k, i.e., Si,k ⊆ Ti,k. Let pi = ∑δi

k=1 pi,k,
where pi,k denotes the payment of the task allocation Si,k,
depending on its desired payment ai,k. Each ui then executes
the tasks (i.e., Si) assigned to her/him by sensing, and reports
the sensing results to the platform (step 4), which then pays
pi to ui (step 5). We assume that all the tasks can be exe-
cuted successfully, thanks to a large number of potential users
with diverse skills in crowdsensing [15]. We also assume that
the users can successfully finish their allocated tasks, while
discussing the users’ unreliability in Section VI.

Hence, the utility of user ui is πu
i = ∑δi

k=1(pi,k − ci,k).
Furthermore, all the users finish the set of tasks as S =⋃N

i=1 Si, and the utility of platform is πp = ∑
∀τj∈S(vj − cj).

Table II illustrates frequently used notations.

Fig. 3. Toy example of Gigwalk for user’s PB, where τj denotes the jth task.

B. Example of Personalized Bidding Scenario

We take Gigwalk as an example to illustrate the PB in
crowdsensing. Gigwalk is a widely deployed crowdsensing
app. Its platform enables mobile participants to visit shops
at different locations to collect real-time data about specific
products, as shown in Fig. 3.

Suppose Gigwalk publishes three sensing tasks (i.e., τ1, τ2,
and τ3) at three different locations, and has three participants
(i.e., Bob, Lucy, and Jack). Due to the differences in their
interests, contexts, and availabilities, these three users have
different preferences on task bidding. Specifically, both Bob
and Lucy will go through the locations of τ1 and τ2 along with
the purple line routine in Fig. 3. As Bob has enough time and
expects to do any subset of τ1 and τ2 with the prices $50 and
$10, respectively. However, Lucy has limited time and expects
to bid either τ1 or τ2 with the prices $10 and $30, respectively.
Jack has two alternative routines as the black solid line and
the black dashed line in Fig. 3. He wants to either do the
bundle of τ1 and τ2 in one routine with prices $15 and $35,
respectively, or take either τ1 or τ3 for the price of $15 or $10,
respectively.

Let u1, u2, and u3 denote Jack, Bob, and Lucy, respectively.
Then, according to the system model in Section III-A, the
personalized bids of Jack, Bob, and Lucy are formalized as
B1 = {(τ1), (τ3), (τ1, τ2), (τ1, τ3)}, B2 = {(τ1), (τ2), (τ1, τ2)},
and B3 = {(τ1), (τ2)}, respectively.

C. Problem Formalization

As shown in Fig. 2, the mechanism design problem for PB
can be stated as follows.

1) From the perspective of the platform, how to design the
task allocation algorithm �(·) for the platform to allo-
cate all the tasks T to the users U with the payments
based on the users’ PBs (B = {B1, . . . , BN}) as (3), so
as to achieve a) minimal social cost; b) strategy proof ;
and c) computational efficiency.

2) From the perspective of users, how to design a bid
description method �(·) for ui to describe PBs Bi based
on her/his preferences ri as (2), in order to satisfy
a) expressiveness and b) description efficiency;

Let xi,j be the indicator variable (xi,j ∈ {0, 1}), i.e., xi,j = 1 if
task j is allocated to ui, and xi,j = 0 otherwise. Xi = {xi,j|j =
1, . . . , M}. The problem is formulated as

Min
N∑

i=1

M∑

j=1

xi,jci,j (1)

s.t. Bi = �(ri), i ∈ {1, . . . , N} (2)
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(Xi, pi) = �(B, T ,U), i ∈ {1, . . . , N} (3)
M∑

j=1

(
pi,j − ci,j

) ≥ 0 ∀i ∈ {1, . . . , N} (4)

πu
i (ci, a−i) ≥ πu

i (ai, a−i) ∀i ∈ {1, . . . , N} (5)
N∑

i=1

xi,j = 1 ∀j ∈ {1, . . . , M} (6)

where the features of the platform owner and users are as
follows.

1) Minimal Social Cost: From the perspective of the plat-
form, it aims at maximizing the platform utility, i.e.,

N∑

i=1

M∑

j=1

xi,j
(
vj − ci,j

)
. (7)

As shown in (6), each task is constrained to be allo-
cated to at most one user, and all the tasks should be
completed [49]. Hence,

∑N
i=1

∑M
j=1 xi,jvj is a constant.

The objective function can be equivalently represented
as (1), i.e., minimizing the social cost (or called social
welfare [38]), which is the sum of the user’s real costs
of all tasks s/he finished [15].

2) Strategy Proof: The mechanism should have individual
rationality [27], i.e., all the users receive nonnegative
utilities as (4). Also, it should satisfy truthfulness [53]
as (5), meaning that it is a dominant strategy in a Nash
equilibrium for all the users to claim the real costs ci

in their bids, where ai denotes the bidding price of ui,
and a−i denotes those of the other users. As each user
cannot improve her/his utility by misreporting the costs
individually, it makes the mechanism truthful. This is
based on the assumption that the users are independent
and will not collude with each other [52]. In addition,
we only consider the tasks covered by bids of at least
two users for truthfulness, due to the large number of
potential users with diverse skills in crowdsensing [15].

3) Computational Efficiency: An algorithm is computa-
tionally efficient if and only if it can be completed
in polynomial time [53]. In the PB formulation, the
task allocation algorithm �(·) should be computation-
ally efficient for real-time allocation, which is very
important for incentivizing users in practice [19]. To
simplify the formulation, as (1), we consider the additive
cost/payments of tasks, where the total cost/payments of
multiple tasks are the summation of that of each individ-
ual task [50], [51]. Also, we will discuss the nonadditive
cost of tasks [10] in Section VI.

4) Expressiveness: The description method �(·) should
be flexible enough to allow the users to express their
diverse bidding preferences of task combinations [33].
The set of all possible task combinations in users’
bids allowed by �(·) is referred to as its expressive
space [28]. The size of expressive space is then defined
as expressive power (denoted as E) which quantifies
the expressiveness of a description method [33]. The
larger the expressive power is, the more diversities of
preferences the users can express.

5) Description Efficiency (Also Referred to as Description
Succinctness): The bid description method �(·) should
be efficient for users to express their preferences [28].
The number of atomic bids in a bid description is defined
as its description length (λ) [34]. We also use average
description length (ADL) λ of all the descriptions to
quantify the description efficiency of �(·). Intuitively, a
shorter ADL eases bidding description for participants,
leading to higher description efficiency [34]. Moreover,
the computational complexity of �(·) is dominated by
the maximum description length (MDL) λ̂ of all the
descriptions.

D. Analysis of Problem Complexity

Given the above comprehensive problem formalization for
both the platform and users, we analyze the computational
complexity of task allocation with PB.

Theorem 1: The optimal task allocation problem with PB
is NP-hard.

Proof: Recall that Bi is the PB of ui. Let bi,k := (Ti,k, ai,k)

be a single-minded bid by ui as Definition 1. Then, we have
bi,k ∈ Bi. If we replace Bi by bi,k for each ui ∈ U , constraint
in (2) can be relaxed and the optimal task allocation problem
with PB (called OTA-PB) becomes the one without PB (named
as OTA-NonPB).

We, next, demonstrate the NP-hardness of OTA-PB by prov-
ing that OTA-NonPB is at least NP-hard. Let Si be the set of
sensing tasks assigned to ui to execute and ci be the corre-
sponding total cost. Thus, in problem OTA-NonPB, constraint
in (3) is equal to a set cover constraint over task set T , i.e.,⋃

i=1,2,...,N Si = T , meaning that all sensing tasks will be
executed.

Furthermore, constraint in (6) implies that the intersection of
any two different sets Si and Sj (∀i, j ∈ {1, 2, . . . , N}, i �= j) is
null, i.e., Si

⋂
Sj = ∅. As the strategy proof is decided by not

the task allocation but the payment, constraints in (4) and (5)
can be relaxed [36]. As a result, OTA-NonPB will become

Min
N∑

i=1

ci (8)

s.t.
⋃

i∈{1,...,N}
Si = T (9)

Si

⋂
Sj = ∅ ∀i, j ∈ {1, 2, . . . , N}, i �= j. (10)

The decision version of the above problem is a mini-
mum weighted set cover (MWSC) problem with the mutual
exclusiveness constraint as (10) [18]. Note that MWSC is
a well-known NP-complete problem [3]. Since checking
whether an obtained solution satisfies the mutual exclusive-
ness constraint or not could be completed in polynomial
time, the decision problem belongs to NP [3]. Therefore, the
OTA-NonPB is NP-hard, which establishes the NP-hardness
of OTA-PB.

IV. DESIGN OF Picasso

To solve the mechanism design problem with PB in
Section III-C, as illustrated in Fig. 4, we propose Picasso,
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Fig. 4. Framework of Picasso, incentivizing platform–user interactions.

which efficiently allocates the tasks with the truthful payment
to the users according to their diverse preferences on the pub-
lished tasks. Specifically, Picasso consists of the following two
main components.

1) Bid Description Based on 3-D Space (Section IV-A):
We first propose a formal framework of bid descrip-
tion based on 3-D expressive space, created by the
orchestration of AND, XOR, and OR in Section IV-A1.
Then, in Section IV-A2, it is proved theoretically to bal-
ance among expressiveness, description efficiency, and
computational complexity, via comparison with existing
models.

2) Task Allocation Based on Dependency
Graph (Section IV-B): We first build the task depen-
dency graph model to represent the user’s bid in
Section IV-B1. Then, in Section IV-B2, we design the
task allocation scheme based on graph decomposition to
address the NP-hard problem. It achieves a near-optimal
solution with a guaranteed approximation ratio in poly-
nomial time cost. Finally, in Section IV-B3, we propose
a novel payment method based on graph recombination,
leveraging the critical payment computation to devise
the strategy proof payment scheme. Such scheme can
prevent selfish users from strategically exploiting the
complex PB to improve their utilities.

A. Bid Description in 3-D Space

1) PB Description in 3-D Space: We first build a formal
framework for the bid description using 3-D expressive space,
and then propose a specific description method along with a
walk-through example.

a) Formal framework of bid description using 3-D
expressive space: To satisfy the expressiveness, description
efficiency, and computational efficiency, we leverage three
basic logical operators, i.e., AND, XOR, and OR, to describe
users’ bids as Definition 2.

Definition 2 (XOR-of-OR Bidding Description): It is con-
structed based on AND, XOR, and OR in the following three
steps.

1) Construct Atomic Bids: Each ui can submit an atomic
bid, denoted by bi,k, including an arbitrary number
(e.g., Hi,k) of task pairs (τi,k,h, ai,k,h) by AND (∧),
h ∈ {1, . . . , Hi,k}. It implies that the user expects to be
allocated all of the tasks Ti,k = {τi,k,h|h ∈ {1, . . . , Hi,k}}

Fig. 5. PB description via 3-D space.

with the total payment ai,k = ∑Hi,k
h=1 ai,k,h, or none of

the tasks with no payment. Thus, bi,k = (Ti,k, ai,k).
2) Construct OR Bids: Each ui can submit an OR bid,

denoted by bO
i , which includes an arbitrary number (e.g.,

Ki) of disjoint atomic bids bi,k by the logical operator
OR (∪), i.e., bO

i = ⋃Ki
k=1 bi,k. ∀k1, k2 ∈ {1, . . . , Ki} and

k1 �= k2, we have Ti,k1 ∩ Ti,k2 = ∅. This implies that
the user expects to be allocated the tasks of any subset
of these atomic bids with the sum of their respective
payments.

3) Construct XOR-of-OR Bids: Each ui can submit an
XOR-of-OR bid denoted by bXO

i , including an arbitrary
number (e.g., Li) of OR bids bO

i,l by the logical operator

XOR (⊕), i.e., bXO
i = ⊕Li

l=1 bO
i,l = ⊕Li

l=1

⋃Ki,l
k=1 bi,l,k. It

implies that the user expects allocation of at most one
of these OR bids, e.g., bO

i,l.
Theorem 2: XOR-of-OR bidding description in terms of x

XOR and y OR operators has the expressive power EXO(x, y)
as (11) with λ̂ = O(x · y). Moreover, it can represent all the
PBs with the largest number of XORs and ORs (i.e., x = 2M

and y = M)

EXO(x, y) =
x∑

i=1

EO(y)!

i!(EO(y) − i)!
(11)

where the expressive power EO(y) with y OR operators is
EO(y) = ∑y

k=1

∑k
i=1 ((−1)i(k − i)M)/(i!(k − i)!). Note that

x ∈ {1, . . . , EO(y)}, and y ∈ {1, . . . , M}.
Proof: We prove this theorem by using dynamic pro-

gramming and the inclusion–exclusion principle theorem of
combinatorics [18]. See the Appendix for a detailed proof.

According to (11), the increment of EXO(x, y) with respect
to x is

�xEXO(x, y) = EO(y)!

x!
(
EO(y) − x

)
!
. (12)

According to (11) and (12), we can create a 3-D expressive
space as shown in Fig. 5. In this 3-D space, the x-axis and
y-axis represent the number of XORs (i.e., x) and ORs (i.e., y),
respectively. The z-axis represents the increase of expressive
space by adding the xth XORs with y ORs as �xEXO(x, y).
Thus, we can use this 3-D space to represent the expressive-
ness of XOR-of-OR bidding description method. Moreover,
according to Theorem 2, this 3-D expressive space with the
largest number of XORs and ORs is equivalent to that of PB.
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Thus, we can use AND, OR, and XOR to describe all PBs in
a 3-D space.

b) PB description method: We use the above XOR-of-
OR bidding framework to describe PBs. In order to trade-off
between expressiveness and computational complexity, we
reduce the 3-D expressive space by limiting the length of 1-D
(e.g., XOR or OR) with a constant R. According to (11), the
dominant dimension of entire expressive space for computa-
tional complexity is the number of XORs. Thus, we further
constrain the number of XORs by a constant R, and the
expressive power is given by the following equation with
λ̂ = R · M

EXO(R) =
R∑

i=1

EO(M)!

i!
(
EO(M) − i

)
!
, R ∈

{
1, . . . , EO(M)

}
. (13)

Hence, the PB description method consists of the following
steps.

1) Describe a Bundle of Tasks: If a user expects to be allo-
cated a bundle of tasks, s/he creates an atomic bid for
this bundle of tasks. Otherwise, s/he creates an atomic
bid for each task.

2) Describe Union of Tasks: If the user expects to be allo-
cated any subset of the tasks, s/he uses OR based on the
atomic bids to create the plan.

3) Generate R Exclusive Plans: Based on the above two
steps, each user can iteratively create exclusive plans
with the maximum limit R. Each participant uses XOR
to describe it, and expects to be allocated tasks of at
most one of these plans.

Let us consider the Gigwalk example in Section III-B to
show how to describe the PB based on 3-D space. Jack has
two exclusive plans and uses XOR to describe his PB as (14).
Similarly, the PBs of Bob and Lucy are given by (15) and (16),
respectively. In addition, we will discuss how to enable user-
friendly PB description in Section VI

Jack: {(τ1 ∧ τ2, $50)} ⊕ {(τ1, $15) ∪ (τ3, $10)} (14)

Bob: {(τ1, $50) ∪ (τ2, $10)} (15)

Lucy: {(τ1, $10) ⊕ (τ2, $30)}. (16)

2) Theoretical Analysis: Based on the framework in
Section IV-A1, we first present the models of SOB and SXB as
Definitions 3 and 4, respectively, generalizing the multiminded
bids [15], [23], [50]. We then compare ours with SMB, SOB,
and SXB in terms of the expressiveness and the description
efficiency via theoretical analysis.

Definition 3 (SOB Bidding Description): It is constructed
using operators AND and OR in two steps.

1) Construct Atomic Bids: Same as in Definition 2.
2) Construct OR Bids: Same as in Definition 2.
Definition 4 (SXB Bidding Description): It is constructed

using operators AND and XOR in two steps.
1) Construct Atomic Bids: Same as in Definition 2.
2) Construct XOR Bids: Each ui can submit an XOR bid

denoted by bX
i , which includes an arbitrary number (e.g.,

Ki) of atomic bids bi,k by XOR operations (⊕), i.e.,

bX
i = ⊕Ki

k=1 bi,k. It implies that the user expects alloca-
tion of at most one of these atomic bids, e.g., getting
the set of tasks Ti,k of bi,k with payment ai,k.

According to Definitions 3 and 4, we have the following
propositions.

Proposition 1: SOB bidding description has the expressive
power EO(x) which is formally given as

EO(x) =
x∑

k=1

k∑

i=1

(−1)i(k − i)M

i!(k − i)!
, x ∈ {1, . . . , M} (17)

with the MDL λ̂ = x, when the number of OR operations is
x. However, it cannot represent all the PBs with the largest
number of ORs.

Proof: We prove that EO(x) is equal to (17) by using
dynamic programming and the inclusion–exclusion principle
theorem of combinatorics. Then, we exploit the reductio ad
absurdum method to prove the SOB bidding description cannot
represent all PBs. In fact, it only represents one kind of bids
with no substitutability [34]. See the Appendix for a detailed
proof.

Proposition 2: SXB bidding description has the expressive
power EX(x) as (18) with the MDL λ̂ = x, when the number of
XOR operators is x. Moreover, SXB has the same expressive
power as Picasso, and both of them can represent all the PBs
with the largest number of XORs

EX(x) =
x∑

i=1

(
2M

)
!

i!
(
2M − i

)
!
, x ∈ {

1, . . . , 2M}
. (18)

Proof: We prove this using Definition 4 and a detailed
proof is provided in the Appendix.

Proposition 3: Given M tasks, ADL of Picasso is O(M)

that is on the same scale as SMB and SOB, while that of
SXB is O(2M) for the same expressive power.

Proof: We prove it based on (11), (17), and (18), and a
detailed proof is provided in the Appendix.

Summary: According to Propositions 1–3, both SMB and
SOB are inexpressive, which cannot accommodate all the
expressive space of PB. Although SXB can satisfy the expres-
siveness, it is not description efficient with ADL O(2M).
In contrast, Picasso achieves a better trade-off between the
expressiveness and description efficiency than XOR, i.e., to
achieve the same expressive power, Picasso reduces ADL from
O(2M) to O(M).

B. Task Allocation Based on Dependency Graph

1) Construction of Task Dependency Graph: According to
the formal framework of bid description in Section IV-A, ui’s
PB can be formally described as

bXO
i =

Li⊕

l=1

Ki,l⋃

k=1

Hi,l,k∧

h=1

(
τi,l,k,h, ai,l,k,h

)
(19)

where (τi,l,k,h, ai,l,k,h) denotes a task. ∧, ∪, and ⊕ repre-
sent three different dependencies between task allocation, i.e.,
AND, OR, and XOR, respectively. For example, in Jack’s
PB description as (14), τ1 and τ2 have AND dependency
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Fig. 6. Construction, decomposition, and recombination of task dependency
graph based on the PB model.

and should be allocated together; τ1 and τ3 have OR depen-
dency, and any subset of them can be allocated. (τ1 ∧ τ2) and
(τ1 ∪ τ3) have XOR dependency, and at most one of them can
be assigned. Thus, the PB description of a user consists of
many different kinds of complex task dependencies.

As illustrated in Fig. 6(b), we use a graph G = (T , e),
called task dependency graph, to represent the PB descrip-
tion in Fig. 6(a). Specifically, the vertices represent tasks
τj, j ∈ {1, . . . , M}. The edge e = (τj, τj′) ∈ T × T represents
the allocation dependency between τj and τj′ . They include
AND, OR, and XOR dependencies, which are represented by
the purple, green, and red edges, respectively, in Fig. 6(b).

Using this task dependency graph, we propose a
dependency-aware task allocation and adaptive critical-
payment computation method by decomposing and then
recombining the task dependency graph of PB.

2) PB Decomposition for Efficient Task Allocation: The
task dependency graph is usually complex due to PB descrip-
tion, making the direct allocation rather difficult. To address
this, we transform this complex problem with PB descrip-
tion into a simple problem with independent SMB ones by
decomposing the task dependency graph. We then propose a
greedy-based allocation algorithm to achieve constant-factor
approximation with polynomial time cost for this NP-hard
problem.

a) Problem transformation by decomposing the task
dependency graph: We leverage the properties of the logical
operators and their intrinsic relationships to decompose the
XOR and OR dependencies for the problem transformation.

First, as shown in the red circles in Fig. 6(b), we use dummy
tasks d with no intrinsic values and costs to express XOR con-
straints indirectly, decomposing the XOR dependencies. It is
because the XOR dependency between the task sets Ti and Ti′
is equivalent to the OR dependency by adding a dummy task
di,i′ for each of them, i.e., Ti⊕Ti′ ⇐⇒ (Ti∧di,i′)∪(Ti′∧di,i′),
where di,i′ represents the dummy task which is added for Ti

and Ti′ . Specifically, as shown in lines 2 and 3 of Algorithm 1,
for bi,l,k in ui’s PB, we add a dummy task dl,k,l′,k′ for each
bi,l′,k′ inside different OR bids with bi,l,k, i.e., l′ �= l.

Thus, as shown in Fig. 6(b), by adding the dummy tasks to
decompose these XOR dependencies, we transform the XOR-
of-OR bidding description in (19) to that with SOB bidding
description as

⋃Ki,l
k=1

∧Hi,l,k
h=1 (τi,l,k,h ∧ di,l,k,h, ai,l,k,h).

Furthermore, we transform the PB description with OR
to that with independent SMBs by decomposing OR depen-
dencies. We add virtual users with SMBs to represent OR
dependency. Specifically, as shown in line 4 of Algorithm 1,

for each bi,l,k of ui, we create a virtual user uv
i,l,k with an SMB

bi,l,k, where bi,l,k = ∧Hi,l,k
h=1 (τi,l,k,h ∧ di,l,k,h, ai,l,k,h).

Let δi be the number of virtual users for ui, i.e., δi = Ki,l.
Such transformation is to leverage the similarity of prop-
erties between the OR dependency and the task allocation.
According to Definition 2, atomic bids of an OR bid have dis-
junction and independent properties. In other words, like the
task allocation of different users, the disjoint atomic bids for
each virtual user can be independently assigned to this user.

In summary, based on the above decomposition of XOR
and OR dependencies, the task allocation problem with a
complex PB description as (19) is equivalently transformed
to the simple problem only with SMBs.

Proposition 4: A user’s PB description of length λ can be
equivalently transformed to λ independent SMB bids of λ

virtual users by adding at most λ2 dummy tasks.
Proof: See the Appendix for the proof.
b) Task allocation with constant-factor approximation:

Based on the above transformation, the optimal task alloca-
tion problem with PB is transformed to the one with SMB
bids. This problem is proved to be NP-hard in Section III-D.
Thus, we propose an approximate task allocation scheme by
greedily selecting the virtual users uv

i∗,k∗ who are the most cost
efficient as

uv
i∗,k∗ = arg max

∀uv
i,k∈Uv

(
ξi,k|Ti,k ∩ S = ∅)

(20)

where Ti,k denotes the task set of the virtual user uv
i,k. Uv

denotes the set of unselected virtual users. S represents the
set of selected tasks. ξi,k denotes the cost efficiency of uv

i,k
with SMB bid (Ti,k, ai,k), i.e., ξi,k = (

√|Ti,k|)/(ai,k), where
|Ti,k| is the number of tasks in Ti,k, and the dummy tasks (e.g.,
di,k) contribute 0.

Specifically, as in line 7 of Algorithm 1, we first sort all the
virtual users (e.g., uv

i,k) according to the decreasing cost effi-
ciency ξi,k. Then, we iteratively select the most cost-effective
virtual user uv

i,k whose bidding task set Ti,k is disjoint with the
set of the allocated tasks S, until all the tasks are allocated, as
illustrated in lines 8–15 of Algorithm 1. Note that Bs in line
11 of Algorithm 1 denotes the set of selected atomic bids.

c) Theoretical analysis: We analyze the proposed task
allocation scheme in terms of the approximation ratio and the
computing complexity as follows.

Lemma 1: Algorithm 1 solves the problem with a constant
factor

√
M of the optimal solution, given M tasks.

Proof: Let Bs and B∗ be the set of selected atomic
bids for Picasso and the optimal solutions, respectively.
For ∀bk ∈ B∗, we create Bs

k = {bi ∈ Bs|ξi ≥
ξk, Ti ∩ Tk �= ∅}. As ci ≤ ck · √|Ti|/√|Tk|, we
have

∑
bi∈Bs

k
ci ≤ (ck/(

√|Tk|)∑
bi∈Bs

k

√|Ti|. Using the

Cauchy–Schwarz inequality, we have
∑

bi∈Bs
k

√|Ti| ≤
√|Bs

k|
√∑

bi∈Bs
k
|Ti|. As ∀bi ∈ Bs

k, Ti ∩ Tk �= ∅ and ∀bi1 , bi2 ∈
Bs

k, Ti1 ∩ Ti2 = ∅, |Bs
k| ≤ |Tk|. Moreover,

∑
bi∈Bs

k
|Ti| ≤ M.

Hence, based on the above derivations, we have
∑

bi∈Bs
k

ci ≤ √
M · ck. (21)
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Algorithm 1 : Task and Payment Allocation in Picasso

Input: Task set: T = {τ1, τ2 · · · , τM}; Bid set of users: {bXO
i |bXO

i =
⊕Li

l=1
⋃Ki,l

k=1
∧Hi,l,k

h=1 (τi,l,k,h, ai,l,k,h), i ∈ [1, N]};
Output: Task&payment allocation of users: {(Si, pi), i ∈ [1, N]};

1: %Equivalent Decomposing of Task Dependency Graph
2: while (∀i ∈ {1, . . . , N} ∀bi,l,k ∈ Bi) do
3: ∀bi,l′,k′ ∈ Bi and l′ �= l, Create dl,k,l′,k′ , Ti,l,k = Ti,l,k ∧

{dl,k,l′,k′ };
4: Create uv

i,l,k with bi,l,k = (Ti,l,k, ai,l,k);
5: end while
6: %Greedy Allocation of Tasks based on Cost Efficiency
7: With ξi,k, sort uv

i,k (∀i ∈ {1, . . . , N} ∀k ∈ {1, . . . , δi}) in
descending order as Uv. Let S = ∅, Bs = ∅;

8: while (T \S �= ∅) do
9: Let uv

i∗,k∗ denote the first user of Uv;
10: if (Ti∗,k∗ ∩ S �= ∅) then
11: Uv = Uv\{uv

i∗,k∗ };
12: else
13: S = S ∪ Ti∗,k∗ , Bs = Bs ∪ bi∗,k∗ ;
14: end if
15: end while
16: %Strategy-proof Payment Allocation
17: while (∀i ∈ {1, . . . , N} ∀k ∈ {1, . . . , δi}) do
18: if (bi,k ∈ Bs) then
19: Compute pi,k according to Eqs. (23) and (24);
20: else
21: pi,k = 0;
22: end if
23: end while
24: return Si = ⋃

∀bi,k∈Bs Ti,k, pi = ∑δi
k=1 pi,k ∀i ∈ {1, . . . , N}.

We define Bs∗ = ⋃
∀bk∈B∗ Bs

k. Then, according to (21),
∑

bi∈Bs∗ ci ≤ √
M · ∑

bk∈B∗ ck. Since Bs ⊆ Bs∗,
∑

bi∈Bs ci ≤∑
bi∈Bs∗ ci. Finally, we have

∑

bi∈Bs

ci ≤ √
M ·

∑

bk∈B∗
ck (22)

where
∑

bi∈Bs ci and
∑

bk∈B∗ ck denote the social cost achieved
by Picasso and the optimal solution, respectively. Thus,
Lemma 1 holds.

Lemma 2: Given M tasks and N users, the time complexity
of Algorithm 1 is O(M2N2), while those of SMB, SOB, and
SXB are O(N2), O(M2N2), and O(N2), respectively.

Proof: See the Appendix for the proof.
Based on Lemmas 1 and 2, we, finally, have Theorem 3.
Theorem 3: Picasso achieves computational efficiency and

approximates the optimal solution with a constant factor
√

M.
3) PB Recombination for Strategy-Proof Payment: In

Section IV-B2, by decomposing the complex PB into indepen-
dent SMBs, we transform the problem to a form with efficient
task allocation. Given this transformation, we first design the
truthful payment scheme based on the critical value for inde-
pendent SMBs without considering PB, i.e., non-PB. We then
show the PBs make the user’s bids more complex, thus lead-
ing to the untruthfulness issue for the payment scheme. To
address this new issue, we also design the payment scheme
for PB based on graph recombination, which is finally proved
to have truthfulness and individual rationality.

a) Truthful payment scheme for non-PB based on crit-
ical prices: According to the Truthful Theorem [34], the

auction-based mechanisms on single parameter domain are
truthful if and only if the following two conditions hold.

1) Monotonicity: The task allocation scheme is monotone.
Specifically, for ui, if the bid bi = (Ti, ai) is selected for
task allocation, then her/his bid b̃i = (Ti, ai − δ) is still
selected when δ > 0.

2) Critical Price: Each user should be paid the critical price
for her/his selected bid. The critical price pi is the mini-
mum one for ui, such that her/his bid (Ti, ai) would not
be selected if ai > pi.

As we use the task allocation scheme based on greedy selec-
tion in Section IV-B2, it satisfies the monotone condition for
truthfulness. Thus, in order to hold the truthful property, we
utilize the critical payment to compute remittance of each
virtual user for her/his SMB.

Specifically, as in lines 17–23 of Algorithm 1, the virtual
users without task allocation get no payment. On the other
hand, according to the bid (Tî∗,k̂∗ , aî∗,k̂∗) of the critical user
uv

î∗,k̂∗ , the selected virtual user uv
i,k with bi,k = (Ti,k, ai,k) gets

the payment as

pi,k = aî∗,k̂∗ ·
√|Ti,k|

√
|Tî∗,k̂∗ |

(23)

where uv
î∗,k̂∗ = arg maxuv

î,k̂
{ξî,k̂|Tî,k̂ ∩ Ti,k �= ∅, ξî,k̂ �= ξi,k}.

b) Truthful payment scheme for PB based on graph
recombination: Although the above mechanism based on the
critical payment guarantees the users to be truthful in terms
of the SMB bidding, it does not work for users’ PBs. Taking
Jack in Fig. 3 as an example, we assume that uv

1,2 is selected,
and uv

1,1 is the critical user of uv
1,2. According to (23), the

payment of Jack is a1,1·
√|T1,2|/

√|T1,1|. Thus, Jack can strate-
gically misreport a1,1 to improve his own total utility. The
reasons are as follows. A user with PB can be decomposed
into multiple virtual users with SMB bids. An individual vir-
tual user cannot directly improve his own utility (i.e., earnings)
by misreporting, he may strategically help other virtual users
improve their respective utilities, thus enhancing the total util-
ity of that actual user. As a result, the PB can be strategically
utilized by the selfish users to improve their utilities, hence
inducing untruthfulness.

To address such untruthfulness, we recombine the task
dependency graph of PB and design an adaptive critical-
payment computation. Specifically, for each selected user, we
find a critical user from the group of different actual users
who have intersecting (common) tasks with the selected one.
Formally, for the kth virtual user of ui, i.e., uv

i,k, we find the
critical user uv

î∗,k̂∗ as

uv
î∗,k̂∗ = arg max

uv
î,k̂

{
ξî,k̂|î �= i, Tî,k̂ ∩ Ti,k �= ∅

}
. (24)

Based on (24), recombination of the task dependency graph
of PB will not select Jack’s uv

1,1 as the critical user. Thus, Jack
cannot improve his utility strategically.

c) Theoretical analysis: We analyze the strategy proof
of the above payment design and have Theorem 4.

Theorem 4: Picasso is individually rational and truthful,
both of which are called strategy proof.
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Proof: In what follows, we will prove the individual
rationality and the truthfulness one by one.

Proof of Individual Rationality: For each ui, if uv
i,k is not

selected, according to Algorithm 1, pi,k = 0, ci,k = 0.
Otherwise, pi,k = aî∗,k̂∗ · √|Ti,k|/

√
|Tî∗,k̂∗ |. As

√|Ti,k|/ai,k ≥
√

|Tî∗,k̂∗ |/aî∗,k̂∗ , pi,k ≥ ai,k. Since ai,k ≥ ci,k, ui’s utility
∑Ni

k=1(pi,k − ci,k) ≥ 0. Thus, Picasso is individually rational.
Proof of Truthfulness: We prove it in terms of 1) indepen-

dent SMBs which are proved truthful in many existing studies
[15], [24], [53] and 2) dependent SMBs. In what follows, we
prove that Picasso is still truthful even with dependent SMBs,
using reductio ad absurdum method.

We assume that the original proposition is not true, i.e., there
exists a user (say ui) who can improve his utility by unilater-
ally misreporting his costs. Specifically, ui improves his utility
by changing the bids of his virtual users uv

i,k(k = 1 . . . Ni)

from Bi = {(Ti,k, ci,k)|k = 1, . . . , δi} to B̃i = {(Ti,k, ai,k)|k =
1, . . . , δi}, where (ci,1, . . . , ci,δi) �= (ai,1, . . . , ai,δi). We prove
this theorem in terms of two different cases, i.e., ui is unse-
lected/ selected with Bi. The detailed proofs are provided in
the Appendix.

In summary, even if users strategically use the task depen-
dencies, Picasso achieves the truthfulness and the individual
rationality by recombining the task dependency graph of PB.

V. PERFORMANCE EVALUATION OF Picasso

We first conduct extensive simulations to evaluate the
performance of Picasso, which is further tested by conducting
a real case study of Gigwalk based on real traces.

A. Simulations

1) Simulation Methodology and Settings: There are N users
to provide PBs for M tasks. The number L of OR bids for
one PB and the number K of atomic bids in one OR bid are
both uniformly distributed, i.e., L ∼ U(1, R) (R = 5) and
K ∼ U(1, 0.6M). The real cost of each user in executing a
task is normally distributed as N(μ, σ 2), where μ ∼ U(20, 40)

and σ ∼ U(5, 15). Each data point is obtained by averaging
20 execution results. Our simulation has been conducted on
a PC with 2.3-GHz dual-core Intel Core i5 CPU and 8-GB
RAM. Picasso is compared to the aforementioned four base-
line methods, SMB [24], SOB [15], SXB [23], [50], and OPT.
SMB, SOB, and SXB use the greedy algorithm and the critical
payment in task allocation and payment computation which
are similar to Picasso. OPT utilizes brute-force search and
Vickrey Clarke Groves mechanism [34] for the optimal solu-
tion using the same description method as Picasso. We use
four performance metrics, i.e., social cost, total payment, time
cost, and ADL.

2) Results: We first compare Picasso with SMB and SOB
in terms of social cost and total payment for different numbers
of users. We set M = 30 and vary N from 100 to 300. As
shown in Fig. 7(a) and (b), the social cost and total payment
of Picasso are always less than those of SMB and SOB by a
large margin. In terms of both social cost and total payment,
Picasso outperforms SMB and SOB by more than 32.6% for

Fig. 7. Comparison of the social cost and the total payment for different
numbers of users. (a) Picasso vs SMB. (b) Picasso vs SOB.

Fig. 8. Comparison of the social cost and the total payment for different
numbers of tasks. (a) Picasso vs SMB. (b) Picasso vs SOB.

Fig. 9. Comparison of time cost with different numbers of users and tasks by
comparing SSB and SOB. (a) Different number of tasks. (b) Different number
of users.

a varying number of users. We also vary M from 10 to 50
and set N = 200. Fig. 8(a) and (b) show that the social cost
and total payment of Picasso are always much smaller than
those of SMB and SOB. Picasso outperforms SMB and SOB
in both social cost and total payment by more than 34.9% for
different numbers of tasks.

We evaluate the computation time for different numbers of
users. Fig. 9(a) and (b) show that although the time cost of
Picasso is higher than that of SMB and SOB, it increases
roughly quadratically with N and M. In particular, Picasso
costs only 16.5 s in the worst case and 9.8 s on average when
the number of users is changed from 100 to 300. Also, it
costs 28.1 s in the worst case and 11.6 s on average when
the number of tasks is changed from 10 to 50. We also com-
pare the execution times of Picasso and OPT in Fig. 11(a).
As the problem is NP-hard, OPT takes significantly long (the
time complexity is O(MMNM)), e.g., running for more than
68 859 s (about 19 h) only when M = 8 and N = 12, while
Picasso completes within 0.6 s, which can be negligible in
practice. Moreover, its execution time sharply increases with
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Fig. 10. Comparison of ADL for different numbers of users and tasks.
(a) Different number of tasks. (b) Different number of users.

Fig. 11. (a) Comparison of time costs of Picasso and OPT. (b) CDF of
overpayment ratio.

the number of tasks and users, making it much less applicable
to large-scale systems. These results are consistent with the
theoretical analysis in Lemma 2.

We use the ADL in Figs. 10(a) and 10(b) to evaluate the
description efficiency of Picasso in comparison with SOB
and SXB. As SMB has much worse expressiveness than
SOB and its ADL is always 1, we do not include it here.
As the ADL of SXB is extremely large, we show its log-
arithm for ease of presentation. Fig. 10(a) shows that ADL
increases linearly with the number of tasks for both Picasso
and SOB, while it increases exponentially with the number
of tasks for SXB. ADL of SOB and Picasso are 9.1 and
23.7 on average, respectively, while that of SXB rises dra-
matically up to 216.9. As illustrated in Fig. 10(b), we also
observe that ADL changes slightly with the number of users
for all of these three methods. ADL of SOB and Picasso
are 9.1 and 23.8 on average, respectively, while that of SXB
explodes to 211.2. These results are consistent with the the-
oretical analysis in Section IV-A2. In conclusion, Picasso is
more description efficient than SXB, achieving an excellent
trade-off among expressiveness, description efficiency, and
computational complexity.

Finally, we evaluate the individual rationality of our method.
We plot the CDF for the ratio of user’s extra payment to her/his
real cost called overpayment ratio for four different settings
(i.e., user and task number). As illustrated in Fig. 11(b), the
overpayment ratio is above 0 for 100%, below 1 for 60%, and
below 2 for 80%. The results show that all of the payments for
users are more than their real cost. Moreover, the overpayment,
i.e., within double of real cost for 80%, is reasonable. Thus,
our method achieves individual rationality.

B. Trace-Driven Case Study of Gigwalk

1) Evaluation Methodology and Settings: To strengthen
our evaluation, we have conducted a case study, emulating

Fig. 12. Trace-based Gigwalk case studies. (a) Driver’s trajectories.
(b) Performance comparisons.

Gigwalk based on the real traces of drivers3 with the following
setup.

Traces and Participants: As shown in Fig. 12(a), we use
the real trajectories of 200 drivers to emulate the mobility
of users, and randomly select 20 locations (represented by
the blue triangles) in these trajectories. Each location has a
random number of tasks, following the distribution U(1, 5).
For example, there are multiple different tasks at a shop or
in its neighborhoods. We emulate 500 crowdsourcing partici-
pants expecting the Gigwalk tasks on their driving paths. Each
participant randomly chooses a starting point, such as her/his
home or work location. We use the real driving paths within
3 km from the participant’s starting point as her/his potential
paths, along only one of which s/he will drive.

Time and Price: It takes time for each participant to do
the tasks, as one needs to find a parking lot [1] and then
picks up the task. We set 10 min per location on average as
her/his dwelling time according to the report in [1]. Moreover,
different users have different available time limits following
U(10, 120) (min). Each user randomly chooses a limited num-
ber of locations up to her/his time limit on her/his path, and
performs the tasks at any subset of these locations. At each
location, a participant chooses a random number of tasks, and
expects to do either all of them after parking there, or none
without stopping, owing to her/his own rationality. The bid-
ding price for each task is initiated according to the user,
driving paths, and locations within a distribution U($1, $100),
and its actual price depends on the task type, platform, and
area. For example, if the platform sets the maximum price
$10, the bidding price randomly changes from $0.10 to $10.

Metrics: Besides ADL for description efficiency, we use the
average bidding task number per user (ANU) to evaluate
the user’s expressiveness. The more tasks each user can
bid, the more user’s expressiveness this mechanism enables.
On the other hand, we exploit the average social cost per exe-
cuted task (ACT) and average platform payment per executed
task (APT) to represent platform utility.

2) Results: First, we evaluate the influences made by the
settings of XOR-OR limits on the performance of Picasso.
As the maximum available time of users is set to 120 min
and the dwelling time is 10 min, the number of OR oper-
ations is no more than 12. Thus, we change the settings of

3The traces are collected by a smartphone app called Go!Track, includ-
ing 200 trajectories with 16 664 GPS coordinates from 200 different drivers.
https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories.
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Fig. 13. Performance evaluation for different settings of XOR and OR limits,
including ACT, APT, ANU, and ADL. (a) ACT and APT. (b) ANU and ADL.

Fig. 14. Evaluation of users’ utility and system’s time cost with different
settings of the XOR-OR limits. (a) Users’ utility. (b) Time cost.

XOR-OR limits (RXOR, ROR) as (1, 1), (1, 4), (1, 8), (1, 12),
(4, 12), and (8, 12), where RXOR and ROR denote the lim-
its of XOR and OR operations, respectively. As illustrated
in Fig. 13(a) and (b), the ACT and APT of the platform
decrease gradually with the limits of XOR and OR opera-
tions, while both ANU and ADL are increasing with them.
On the other hand, as shown in Fig. 14(a) and (b), the high
XOR-OR limits diminish the utility of each user, and increase
the execution time of the proposed algorithm. The results
indicate that the higher XOR-OR limits bring more bidding
freedom, encouraging users to bid more tasks, which increase
the description length and the computation time. However,
both the ADL and the time cost of Picasso grow slowly
with the XOR-OR limits, which is a polynomial increase as
illustrated in Fig. 13(b) and (b). Interestingly, more bidding
freedom stimulates competition between users for the allo-
cation of limited tasks, decreasing the utility of each user,
hence resulting in much lower social cost (and platform pay-
ment). Similar to economic freedom, it empowers people and
unleashes their powerful forces of choice, thus enhancing the
market competition and improving the overall economy [4].

Moreover, we compare Picasso with existing schemes,
i.e., SMB, SOB, and SXB. The presented means are out
of 20 emulations. Fig. 12(b) shows that, compared to SMB
and SOB, Picasso reduces ACT and APT by more than
60% and 61%, respectively, while increasing ANU by at
least 9.7x. So, Picasso effectively enables the user’s expres-
siveness and significantly reduces the social cost as well
as the platform payment. On the other hand, compared
to SXB, Picasso cuts ADL by more than 74%, despite
their similar ACT, APT, and ANU. Thus, Picasso achieves
powerful expressiveness without compromising description
efficiency.

In summary, Picasso is shown to benefit not only the
platform owner by significantly lowering its payment, but
also the participants by raising their intrinsic motivation with
more expressiveness and description efficiency. That is, these
Gigwalk case studies confirmed the effectiveness of Picasso
in incentivizing both the platform owner and the participants.

VI. DISCUSSION AND FUTURE WORK

We discuss the influences of practical factors in crowdsens-
ing applications on Picasso as follows.

Task Execution Unreliability: After task bidding and alloca-
tion, the users may fail to execute these allocated tasks, owing
to users’ unreliability and their mobility’s uncertainty [16]. To
address this issue of task execution unreliability, Picasso only
rewards the users who successfully execute the tasks, such as
uploading the sensed data. Furthermore, to avoid the user’s
bidding misbehavior (i.e., bidding as many tasks as possible),
we can introduce a penalty to the users who do not finish their
allocated tasks, such as not allocating tasks to them in the
future. In addition, we can extract the users’ reliability from
their historical behaviors using deep learning methods [14],
which is fed back to design the task allocation scheme. In the
future, we would like to explore the allocation of tasks based
on the users’ task execution probability model.

Nonadditive Cost of Tasks: Owing to the law of diminish-
ing return in economics [10], a user may pay less cost when
conducting multiple tasks together, than the summation of
costs when conducting each task individually. For example,
in Gigwalk application, when multiple tasks are located very
close to each other, some users with enough time may pay a
discounted cost when executing all the tasks. However, Picasso
can be easily extended to the case of nonadditive cost with a
simple modification. Specifically, this case happens only when
the user wants to finish multiple tasks together, which are rep-
resented by the atomic bid in Picasso. Hence, the users can
set the minimal cost and the desired payment for this atomic
bid according to their actual cost, thus taking account into a
diminishing cost. In addition, the diminishing-cost property of
the tasks’ cost can be further exploited to improve the total
utility of the platform owner [49], which is part of our future
work.

User-Friendly Preference Expression: In practice, based on
the formal bid description in Section IV-A, a user-friendly
preference expression system should be designed while con-
sidering the underlying applications. In what follows, we take
the practical PB in Gigwalk as an example. First, the users
input their source and destination locations as well as their
available time slots. Then, similarly to the Google navigation,
the system returns multiple candidate routes from the source
to the destination. Each route consists of several Gigwalk
tasks. Moreover, the users express their preferences using user-
friendly interfaces, such as binding those tasks expected to
be done together. Furthermore, we can utilize machine learn-
ing [45] to automatically extract the users’ preferences based
on their behavior data sets [8], further facilitating the users’
input. Finally, the system automatically creates the formal bid
description using Picasso.
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VII. CONCLUSION

We have designed and evaluated a novel PB-based incen-
tive mechanism, called Picasso, that consists of two main
components.

1) We have proposed a PB description method in 3-D
expressive space with AND, XOR, and OR, achieving
a good trade-off among expressiveness, computational
complexity, and description efficiency.

2) We have designed schemes for constant-factor approxi-
mation in optimal task allocation and strategy proof in
payment with computational efficiency, by decomposing
and recombining task dependency graph of PB.

Both the theoretical analysis and trace-based Gigwalk case
studies have validated the above essential properties of
Picasso.
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