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Abstract—Indoor location-based services (LBS) have exhibited
large commercial and social values in smart cities, and urgent
demands of which have spurred many localization techniques.
Existing indoor localization approaches mostly rely on fingerprint
techniques, leveraging either spatially discrete fingerprints or
temporally consecutive ones for localization. However, these ap-
proaches often suffer from large errors or high time overhead
in practice due to signal ambiguities or long input sequences.
To overcome these drawbacks, this paper proposes a framework
utilizing multiple adaptive representations of signal sequences for
localization, where each representation indicates a corresponding
signal structure with underlying location clues. As an example, the
proposed approach takes geomagnetic signal sequences as input
and infers location features from two intuitive representations, e.g.,
spatial and temporal ones. With adaptive signal representations,
the proposed approach takes specifically optimized neural net-
works to extract corresponding location clues respectively and fuses
them to generate more distinguishing features for more accurate
localization. Furthermore, the ensemble learning mechanism is
adopted in the approach and a weighted k-NN based location esti-
mation algorithm is devised to enhance the robustness. Extensive
experiments in three different trial sites demonstrate that the pro-
posed approach outperforms state-of-the-art competing schemes
by a wide margin, reducing mean localization error by more than
46%.

Index Terms—indoor localization, geomagnetism, signal
representations, neural networks, ensemble learning.

I. INTRODUCTION

THE growing demands for indoor location-based services
(LBS) and the popularization of smart mobile devices have

spurred rapid development of indoor localization techniques.
Indoor localization plays a more and more critical role in em-
powering Internet of Things for a wide range of applications,
e.g., pedestrian or robot localization [1], [2], crowd monitor-
ing [3] and targeted advertising [4], to name a few. Traditional
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satellite-based positioning and navigation systems (such as GPS)
cannot meet the requirements of accurate indoor positioning
due to signal attenuation caused by poor connectivity between
end devices and satellites in indoor environment, which triggers
researchers to bend their energies to further explorations on
indoor localization.

With rapid popularization and ubiquitous nature of various
sensors in mobile devices, e.g., radio-frequency sensor, imaging
sensor and magnetometer, various signals captured by these
sensors are employed for indoor localization, such as Wi-Fi [5],
[6], Bluetooth Low Energy (BLE) [7], vision [8], and geomag-
netism [9], [10]. Among all those signals explored, geomagnetic
signal shows great application prospect due to its omnipresence,
which means there is no need for any extra infrastructure de-
ployment for localization. Moreover, geomagnetic signal which
mainly generates from natural earth’s magnetic field exhibits
high global stability over time and it also has strong local varia-
tions due to metamorphic nature of indoor environment caused
by nearby ferromagnetic objects, e.g., electrical appliances,
steel-based building materials, which provide much promise
for accurate localization [11]. And the impact of pedestrians on
geomagnetic field is also marginal compared with that on other
signals (vision, Wi-Fi, BLE). In that respect, geomagnetic signal
is more adaptable especially in the scenes with large human
traffic.

On the other hand, the underlying positioning algorithms are
the key to indoor localization. Reviewing the existing position-
ing algorithms, fingerprint-based ones have drawn much atten-
tion [12], [13]. Most fingerprint-based positioning techniques
can be broadly divided into two categories: spatial based and
temporal based approaches. In the first category, the spatial
location clues refer to discrete measurements of input signals at
different indoor locations (e.g., a Wi-Fi/Bluetooth fingerprint,
a geomagnetic measurement or an image at a fixed location).
Ferromagnetic objects, such as doors, iron cabinets, escala-
tors or lifts usually fluctuate nearby geomagnetic fields, pos-
ing distinguishing spatial patterns for localization [14]. Based
on these discrete signal measurements with spatial location
clues, existing approaches infer current position with the most
similar geo-tagged signal fingerprint by comparing it with a
pre-established database. However, suffering from poor distinc-
tiveness of discrete signal measurements (locations far away
may have very similar signal fingerprint), these approaches are
usually incapable of achieving sufficient accuracy and robust-
ness, especially in large spacious sites. The approaches that
utilize discrete signal measurements are prone to location feature
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ambiguity and be easily impacted by random noise, which may
cause large localization errors consequently.

To revamp the localization performance, some researches
switch from discrete signal observations to explore context tem-
poral correlations [15], in which temporal successive measure-
ments of signal are employed to indicate location clues, e.g., a
signal RSSI (Received Signal Strength Indicator) vector, a video
clip or a geomagnetic measurement sequence. These approaches
evaluate the specific fluctuations of successive signal sequence
in indoor environment and take advantage of this pattern which
implies temporal clues to pinpoint current position. Taking
temporal correlations between consecutive signal measurements
into consideration, these temporal based approaches transcend
previous spatial based ones which use discrete inputs. And the
impact of signal random noise can be effectively reduced by
means of employing such continuity constraints and temporal
correlations, thus eliminating erroneous position estimations.
However, employing long input signal sequences usually causes
the increasing of computational complexity [16], which leads to
large time consuming. To achieve lower time overhead, some
approaches utilize short signal sequences as input (e.g., a short
RSSI vector or a few frames of videos). Suffering from a lim-
ited spatial coverage of short sequences, it leads to degenerate
distinctiveness of location clues and large localization errors
consequently.

In this paper, we propose to utilize multiple adaptive repre-
sentations of a signal sequence for accurate localization. More
specifically, we devise a location estimation framework that
considers both Spatial and Temporal location features of signal
for Localization, termed ST-Loc. And the crux of ST-Loc is how
to effectively extract distinctive location features under different
dimensions. Firstly, instead of using raw data directly, we convert
the input sequence into multiple adaptive representations, e.g.,
spatial and temporal ones in this paper, where each representa-
tion indicates a corresponding signal structure with underlying
specific location correlations. Then, we extract corresponding
location features on the basis of these signal representations
respectively and fuse them together to generate more compre-
hensive and distinguishing fusion features for localization. To
reduce the impact of random noise, we further improve its per-
formance by employing ensemble learning mechanism in final
location estimation, using selective ensemble method among
multiple independent trained localization models to achieve
higher robustness.

In summary, we make the following contributions:
� Utilizing multiple adaptive representations of signal for

more distinctive location features: As discussed above, the
distinctiveness of location features is critical for revamp-
ing localization accuracy. To facilitate distinctive feature
extraction from signal, we propose to convert the original
signal sequence into multiple adaptive representations with
underlying correlations, e.g., spatial and temporal ones in
this paper. Then, we adopt specifically optimized networks
to extract features respectively and fuse them together for
accurate localization.

� Inferring spatial features through image processing meth-
ods: A collected signal sequence is firstly converted into a

Fig. 1. For a geomagnetic signal sequence collected while user walking,
we convert it into a geomagnetic heatmap. (Red/blue/green lines denote the
components of geomagnetic sequence in three axes ofX,Y andZ respectively.).

heatmap, a spatial representation where each pixel corre-
sponds to a spatial location and the pixel value denotes
signal reading. Then, employing specifically optimized
ResNet [17], we apply convolution to different patches
of this heatmap, which correspond to spatially distributed
signal observations at regular intervals in the local region,
as shown in Fig. 1. In this way, we are able to infer spatial
location features from these signal readings that span a long
range, which reflect the regional correlation.

� Extracting temporal features with hierarchical recurrent
network: For an ordered signal sequence, LSTM model is
employed as basic unit in ST-Loc to extract underlying
temporal features of signal sequence. Since it’s usually
time-consuming to extract temporal features with conven-
tional LSTM from a long sequence directly, we devise a
hierarchical structure to reduce the overall time overhead of
feature extraction by means of sequence segmentation and
parallel processing mechanism. Furthermore, we enhance
the extracted features by employing a bidirectional scheme,
considering both past and future contextual correlations in
the sequence.

� Employing ensemble learning for robust location estima-
tion: To reduce the impact of random noise and outliers, we
apply ensemble learning mechanism in ST-Loc to improve
robustness. We first construct multiple location estimation
models with different initial training settings. Then by inte-
grating these models to make a vote on localization results,
ST-Loc overcomes the problem that the individual model
is prone to random errors. On this basis, we further design a
weighted k-NN based joint location estimation strategy for
better adaptability facing complex indoor scenes. Through
the mechanism above, we further improve localization
accuracy and robustness of ST-Loc.

As mentioned earlier, geomagnetic signal benefits from its
omnipresence, high global stability over time and strong local
variations in indoor environment. In this paper, as an example,
we take geomagnetic sequences as input to evaluate the local-
ization performance of ST-Loc. We have conducted extensive
experiments in three different trial sites and experimental results
demonstrate that ST-Loc reduces mean localization error by
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more than 46% and achieves lower time overhead during local-
ization compared with state-of-the-art competing approaches.
Besides, ST-Loc can be also theoretically adapted to other
signal sequences for indoor localization, such as Wi-Fi [5],
Bluetooth [7] and vision [8] sequences.

The remainder of this paper is organized as following. We
review related works in Section II. The workflow of ST-Loc is
presented in Section III and the design of ST-Loc is elaborated in
Section IV. Then we illustrate experimental results in Section V
and finally conclude in Section VI.

II. RELATED WORK

In this section, we review the related works. To achieve higher
accuracy and efficiency, researchers have explored various ambi-
ent signals for localization. e.g., Wi-Fi, Bluetooth Low Energy
(BLE), visible light and so on. While Wi-Fi [18], BLE [19]
and visible light-based [20] approaches are able to achieve
sufficient accuracy in some specific scenes, they usually need
to deploy extra infrastructures, which increases deployment and
maintenance cost significantly. Even though pure vision-based
approach [21] does not need external infrastructures, it is
limited to specific scenes with rich textures. Moreover, the work
in [22] proposes to utilize a short video clip to recognize and
calibrate landmarks, then calculate the user’s position based on
triangulation technology. Although efficient, this approach need
user’s extra operations (record video in a specified manner),
which is not user-friendly.

Compared with signals mentioned above, geomagnetism has
attracted much attention lately. Considering spatial features of
geomagnetic signals, some researchers evaluate the measure-
ment of geomagnetic signal at different indoor locations and
use this pattern to pinpoint users, which is inspired by that
ferromagnetic objects, such as doors, iron cabinets, escalators
or lift usually fluctuate nearby geomagnetic field, posing dis-
tinguishing spatial patterns. For example, LMDD [23] employs
the geomagnetic pattern of door opening to discover doors. And
SemanticSLAM [24] proposes to cluster geomagnetic signal
observations so as to find landmarks for calibrating current
position. However, such discrete signal observations still have
a very limited discernibility, and single observation collected
at different positions could be similar. This signal ambiguities
may result in degraded distinctiveness of location features. As
a result, discrete signal observation is not sufficient to be used
as a unique location signature especially in large-scale indoor
scene.

Noticing the temporal correlations of signal sequence, some
researchers propose to leverage sequential measurements of
signal as input. By vectorizing multiple successive signal obser-
vations to obtain higher dimensional temporal signature, these
approaches enhance localization accuracy with such temporal
location correlations. For instance, NaviLight [25] and Travi-
Navi [26] both take signal sequence as input and employ dy-
namic time warping (DTW) algorithm for localization. However,
the comparison of two sequences is usually computationally
expensive and may result in high computational cost and time
overhead especially when it needs to use relatively long signal

sequences as input for sufficient accuracy. In addition, some
researchers employ motion sensor assistance to achieve higher
accuracy. The works in [16], [27] adapt particle filter mecha-
nism to help positioning with signal fingerprints. Furthermore,
WAIPO [28] and Magicol [29] fuse other signals (images, Wi-Fi)
to enhance the localization accuracy. Although effective, those
approaches still have some drawbacks. First, multiple signal-
fusion localization means multiple signal data collection, which
incurs higher cost of site survey. Second, the noise of inertial
measurement unit (IMU) has a large impact on particle filter
mechanism, which leads to potentially large localization error.
Third, to achieve sufficient accuracy, they have to generate a
large number of particles in particle filter mechanism, which also
incurs large computational cost and causes high time overhead.

Recently, inspired by the success of deep learning algorithm,
some approaches [30]–[33] propose to utilize neural networks to
process signal sequences for predicting position. For example,
DeepML [31] fuses magnetic field data and light intensity data
and devises a long short-term memory (LSTM) based system
for localization. The work in [33] proposes to utilize the ordered
geomagnetic sequence as input instead of discrete observations
and employs a basic recurrent neural network (RNN) to extract
the location features for localization. With state-of-the-art deep
learning techniques, those approaches can achieve good perfor-
mance in some typical scenes. However, facing more complex
indoor scenes, there are few specifically optimized neural net-
works for indoor localization. And it’s still hard to effectively
extract valid location feature for sufficient localization accuracy
just with a simple LSTM or a basic RNN, especially in large
indoor site.

A preliminary version of ST-Loc has been reported in [34].
While it typically works well for localization with geomagnetic
signal, its performance can be further improved. In this paper,
we advance it as follows: 1) We first further analyze the charac-
teristics of geomagnetic signal in detail, which provide a more
comprehensive guidance for pre-processing of geomagnetic sig-
nal; 2) Considering the impact of statistical noises and outliers,
we employ ensemble learning mechanism to enhance the ro-
bustness and further devise a weighted k-NN based location
estimation algorithm for higher accuracy and robustness. 3) We
also conduct more complete and extensive experiments in real
trial sites to evaluate the performance of proposed network, and
experimental results show that ST-Loc with further enhance-
ments is able to achieve higher robustness and further reduce
mean localization error, compared with previous version.

III. SYSTEM WORKFLOW

In this section, we present the workflow of proposed local-
ization system in Fig. 2. For demonstration, we make use of
geomagnetic sequences and consider both spatial and temporal
features of which to locate targets.

The system workflow consists of two phases, an offline phase
and an online phase. In the offline phase, we collect geomag-
netic data in the trial site and use the labeled data to train the
localization models based on the designed network. Specifically,
we first design dense survey paths in the public area of the
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Fig. 2. The workflow of the proposed localization system.

Fig. 3. Overall framework of ST-Loc.

trial site according to its floorplan. Then surveyors walk along
these designed paths, carrying a client device which records
the sensor data including geomagnetic signal along the paths.
Combining the indoor structure information (location coordi-
nate) from floorplan, we label each collected geomagnetic se-
quence with the location coordinate where the last geomagnetic
sample is collected. Then we store these labeled geomagnetic
sequences in a database. Based on the constructed database,
we take advantage of ensemble learning mechanism to train
multiple localization models which will be used in online phase
for location estimation.

In the online phase, each user carries a client device and
walks in the trial site. The client program records the sensor
data along the path including geomagnetic measurements au-
tomatically. To reduce the impact of the external factors, we
first process the collected geomagnetic sequences to resolve the
random noise and heterogeneity problem (Section IV-A). Then
we convert the processed geomagnetic sequences into spatial
and temporal representations respectively and extract corre-
sponding features for localization (Section IV-B and Section IV-
C). With multiple localization models trained in offline phase,
we finally employ ensemble learning technique and devise an
adaptive combination strategy for multiple trained models to
enhance the accuracy and robustness of final location estimation
(Section IV-D).

TABLE I
MAJOR SYMBOLS USED IN THE PAPER

IV. DETAILED DESIGN OF ST-LOC

In this section, we elaborate the design of proposed ST-Loc
which employs both the temporal and spatial clues of signal
sequences for localization. We first illustrate the overall structure
of ST-Loc in Section IV-A. Then, we present the process of
spatial and temporal feature extraction in Section IV-B and
Section IV-C respectively, followed by the details of ensemble
learning based position estimation in Section IV-D. Finally, a
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Fig. 4. Raw geomagnetic sequence collected with different devices along a
same indoor trajectory.

brief time complexity analysis is presented in Section IV-E. And
Table I lists the major symbols used in this paper.

A. Overall Structure of ST-Loc

Knowing the limited feature discernibility of single geomag-
netic measurement, ST-Loc takes the consecutive geomagnetic
sequences as input. Moreover, ST-Loc considers both temporal
and spatial location features of geomagnetic sequences for local-
ization. The overall framework of ST-Loc is presented in Fig. 3.
Noticing the noise of device sensor, we first filter high frequency
noise of the sequence, and employ the gradient of sequence as
input instead of raw sequence to deal with the device heterogene-
ity problem. With processed sequence, we design a hierarchical
BiLSTM to capture the corresponding temporal features. Mean-
while, we convert the geomagnetic sequence into a heatmap, and
apply a specially optimized ResNet to extract spatial features
from resulted heatmap. Then we fuse extracted temporal and
spatial features to generate more comprehensive and distinctive
fusion features. Finally, we employ ensemble learning mecha-
nism on ST-Loc and devise a weighted k-NN based multi-model
joint position estimation strategy for final position estimation.
More specifically, ST-Loc consists of four major modules: 1)
Data preprocessing; 2) Multi-scale spatial feature extraction;
3) Hierarchical temporal feature extraction and 4) Ensemble
learning based position estimation. We overview each module
as following:

1) Data pre-processing. For raw geomagnetic sequence, as
shown in Fig. 4, it is inevitably mixed with random noise
caused by user motion and other factors. Therefore, we first
apply empirical mode decomposition (EMD) [35] algorithm to
filter out high frequency noise of the raw sequence to obtain
filtered geomagnetic sequence as presented in Fig. 5. Then for
device heterogeneity (various devices or sensors may have dif-
ferent calibrations for magnitude of geomagnetic field intensity
as illustrated in Fig. 4), we calculate the gradient of filtered
geomagnetic sequence as input instead of using geomagnetic
sequence directly, in view of that the distortions of geomagnetic
sequences collected by different devices at the same position are
the same. Utilizing gradient sequence, as shown in Fig. 6, we
don’t have to put extra effort to calibrate different devices to a
uniform standard.

In addition, user (speed) heterogeneity problem also needs
to be considered in practice. Even using a same device along

Fig. 5. Filtered geomagnetic sequence collected with different devices along
a same indoor trajectory.

Fig. 6. Gradient magnitude of geomagnetic sequence collected with different
devices along a same indoor trajectory.

a same trajectory, different user moving speed usually leads to
distinct geomagnetic sequence with different scales as shown
in Fig. 8. To address this, we first estimate the speed of users
based on the inertial measurement unit of mobile devices with
state-of-the-art techniques [36]. And the estimated speed in-
formation is presented in Fig. 7. Then we segment original
geomagnetic sequence into many small subsequences. Based
on estimated user speed in each segment, we stretch or squeeze
the subsequences to a standard length that corresponds to the
reference speed. Finally, we concatenate these stretched or
squeezed subsequences together so that geomagnetic sequences
with different scales are mapping to a uniform standard as shown
in Fig. 9.

2) Multi-scale spatial feature extraction. To enhance the
distinctiveness of spatial location clues, we propose a spatial
representation of magnetic sequence and design a multi-scale
spatial feature extraction (MSFE) model. We first convert input
geomagnetic sequence into a high dimensional geomagnetic
heatmap, a spatial representation where each pixel is correspond-
ing to a spatial position. The resulted heatmap is able to provides
more regional correlations of distributed signal observations
compared with low dimensional sequence. Then we utilize a
specially optimized ResNet to extract more distinctive spatial
feature from the heatmap for localization. Details of MSFE is
presented in Section IV-B.

3) Hierarchical temporal feature extraction. Intuitively, we
take advantage of state-of-the-art LSTM model to extract tempo-
ral features. Nevertheless, it is still hard in practice to efficiently
correlate from the first to last instance for a long sequence by
feeding the sequence to a LSTM model directly. And the serial
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Fig. 7. Moving speed under different walking modes along a same trajectory
(fast, slow and variable speed).

Fig. 8. Original geomagnetic sequence under different moving speed along a
same indoor trajectory.

Fig. 9. Squeezed/Stretched geomagnetic sequence under different moving
speed along a same indoor trajectory.

processing for a long sequence is also time consuming. There-
fore, we devise a hierarchical structure, employing sequence
segmentation and parallel processing mechanism to efficiently
extract temporal features while reducing overall time overhead.
Furthermore, we adopt a bidirectional LSTM (BiLSTM) to
enhance the extracted features. And Details are illustrated in
Section IV-C.

4) Ensemble learning based position estimation. With ex-
tracted spatial and temporal features, we concatenate them to
generate more distinctive fusion features for localization. More-
over, we employ ensemble learning mechanism to further im-
prove the robustness and accuracy of ST-Loc. To be specific, we
train multiple independent models based on proposed network
with different initial settings, from which we can obtain multiple
predictions of position. Furthermore, we design a weighted
k-NN (k-nearest neighbors) based algorithm to integrate those

predictions to get the final estimation position. Details of en-
semble learning based position estimation will be elaborated in
Section IV-D.

B. Multi-Scale Spatial Feature Extraction

1) Spatial Representation of the Geomagnetic Sequence:
Considering that discrete and low dimensional signal fingerprint
lacks sufficient spatial distinctiveness, we propose a spatial rep-
resentation of input signal, converting raw signal sequence into a
high dimensional heatmap so as to obtain more regional correla-
tions of distributed signal observation. In this paper, we convert a
raw geomagnetic sequence into a geomagnetic heatmap, where
each pixel denotes a single geomagnetic measurement in the
sequence and pixel value corresponds to intensity of the mea-
surement. As shown in Fig. 1, a geomagnetic sequence collected
while the user walking is converted into a geomagnetic heatmap.
And we conceive of a local window (denoted by red block
in Fig. 1) in the resulted heatmap, rows of which are actually
sub-portions of original geomagnetic sequence and correspond-
ing to a sequence of spatially distributed locations in a local
region. So employing convolution to patches of the heatmap,
we are able to extract features that represent spatial clues of
geomagnetic measurements distributed in a local region. And
these regional correlations will provide more distinctiveness to
construct spatial features for localization.

More specifically, as shown in Fig. 10, a single geomagnetic
measurement usually consists of values in three axes (X,Y and
Z). For a collected geomagnetic sequence S of length q, which
has been pre-processed as elaborated in Section IV-A:

S = {m1 m2,m3, . . .,mq}, (1)

wheremi = (xi, yi, zi) denotes a processed single geomagnetic
observation including signal reading values in three axes. We
first reshape it to a three-dimensional rectangular matrix, then
normalize all elements of the matrix to RGB color space [0, 255]
as following:

Smatrix =

⎡
⎢⎢⎢⎣

m1 m2 · · · mu

mu+1 mu+2 · · · mu+u

...
...

...
...

mu(v−1)+1 mu(v−1)+2 · · · muv

⎤
⎥⎥⎥⎦ , (2)

S̃matrix =
255 · (Smatrix −Min(Smatrix))

Max(Smatrix))−Min(Smatrix)
, (3)

where u, v denote the width and height of the matrix (uv = q),
and Max(·), Min(·) denote Maximum function and Minimum
function respectively.

With normalized geomagnetic matrix s̃matrix, we convert it
into an RGB-channels image, in which the values (r, g, b) of a
pixel in three channels are corresponding to the values (x, y, z)
of an element (a single geomagnetic measurement) in the matrix.

2) Optimized Residual Neural Network: ST-Loc employs
an optimized ResNet to extract features from geomagnetic
heatmaps following transfer learning mechanism. ResNet tries
to address the notorious vanishing gradients problem where
gradients decrease slowly, preventing weights from changing
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Fig. 10. Spatial representation and corresponding feature extraction.

their values. To address this, researchers realize ResNet with
shortcut connections, where they skip one or several layers to
achieve higher accuracy with more layers. We refer interested
readers to [17] for more details.

Benefiting from the residual structure, ResNet has achieved
superior accuracy in various image processing tasks. How-
ever, original ResNet is primarily adopted to processes natural
images, which are fundamentally different from geomagnetic
heatmaps in terms of image properties and task objectives.
According to the empirical study in transfer learning [37], the
activations in ResNet are too concentrated around the object
(i.e., only features tightly related to the source domain have
strong responses) when FC (fully connected) layers are missing.
This relationship makes it inappropriate to transfer to a target
domain if the source and target are distant from each other.
But the models with FC layers show a different property. The
distributed activations enable them to capture useful image
features in the target domain when the target is dissimilar to
the source domain. So the research [37] concludes that when
image properties or task objectives in the source domain are far
different from those in the target domain, it is essential to add FC
layers in pre-trained model of the source domain. Hence, ST-Loc
takes original ResNet which is pre-trained on ImageNet [38] as
foundation, then replaces original classification layer with extra
FC layers, normalization layers and non-linear activate function
layers. Finally, using geomagnetic heatmaps as training data, we
fine-tune the reconstructed ResNet for feature extraction.

More specifically, as illustrated in Fig. 10, the final clas-
sification layers of original ResNet are removed firstly, then
the remain of the network will output a 512-D feature vector
fS . Subsequently, we map this 512-D feature vector to higher
dimensional vector by inserting a 2048-D FC layer [37] followed
by a batch normalization layer. Finally, we add a rectified linear
unit (ReLU) as non-linear activate function. The process is as
following:

f̃S = W fS + b, (4)

fSnorm =
γ√

V ar[f̃S ] + ε
· f̃S + (β − γE[f̃S ]

V ar[f̃S ] + ε
), (5)

FS = η ·ReLU(fSnorm), (6)

where E[·] and V ar[·] denote mean and standard deviation
respectively, and W, b, β, γ, ε and η are learnable parameters.

Finally, with fine-tuned ResNet, we extract multi-scale spatial
feature FS from the geomagnetic heatmap.

C. Hierarchical Temporal Feature Extraction

1) Temporal Representation of the Geomagnetic Sequence:
In a plenty of fingerprint-based approaches, position estimation
is entirely independently based on a single signal fingerprint (a
signal measurement). Unfortunately, those approaches are usu-
ally prone to feature ambiguity and easily impacted by random
noise, especially in large indoor scene. In practice, geomagnetic
signal collected by devices is actually an ordered geomagnetic
signal observation sequence over time dimension, in which
each geomagnetic signal measurement is associated with other
adjacent measurements. As shown in Fig. 4, such correlations
(sequential fluctuation trend) of geomagnetic signal sequence
is especially obvious and distinctive in complex indoor envi-
ronment. Extracting and applying these temporal correlations
and continuity constraints in geomagnetic signal sequence can
effectively improve the distinguishability of location features.
Intuitively, we propose to take advantage of consecutive geo-
magnetic sequence (a temporal representation) as input instead
of discrete signal measurements. Then we are able to extract such
temporal correlations and continuity constraints which provide
more distinctive location clues in temporal dimension.

2) Hierarchical Bidirectional LSTM: In order to capture
these temporal correlations and continuity constraints, we em-
ploy state-of-the-art LSTM model in ST-Loc. Bringing in gate
mechanism, LSTM address the vanishing gradient problem and
makes an improvement on standard RNN. Benefiting from this
mechanism, LSTM model is able to learn long-term depen-
dencies of input sequence, which usually applies following
operations at each timestep:

ft = σg(Wfxt + Ufht−1 + bf ), (7)

it = σg(Wixt + Uiht−1 + bi), (8)

ot = σg(Woxt + Uoht−1 + bo), (9)

c̃t = σc(Wcxt + Ucht−1 + bc), (10)

ct = ft ◦ ct−1 + it ◦ c̃t, (11)

ht = ot ◦ σh(ct), (12)

yt = σo(Wyht + by), (13)
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Fig. 11. Temporal representation and corresponding feature extraction.

where xt and ht represent the input and hidden state at time t.
And σ denotes the non-linear activation function.W,U and b are
the learnable parameters. f, i, o represent forget gate, input and
output reset gates respectively, and c is a memory cell state. The
cell in LSTM is able to keep, update or forget feature information
over time by these gates.

However, for a long input sequence, it is still hard in practice
to efficiently correlate from the first to last instance by using
a LSTM model directly. At same time, the serial processing
for a long sequence is also time consuming. Therefore, we
devise a hierarchical structure, as presented in Fig. 11, we first
segment a long geomagnetic sequence into many subsequences
and extract the temporal features of these local subsequences
with low-level LSTM respectively, then we take these extracted
features as input of a high-level LSTM to extract global tem-
poral features in higher dimensions. More specifically, we seg-
ment input sequence with specific scale to get subsequence set
{s1, s2, . . ., sn}. Then for these local subsequences, we extract
the temporal features respectively, e.g., in the case of a local
subsequence si, we extract corresponding local temporal feature
fi. Then extracted local features {f1, f2, . . ., fn} will be taken as
input of a high-level LSTM to extract global temporal features.
Applying this hierarchical structure, each LSTM unit in the net-
work processes shorter subsequence, which means that it is able
to keep more detail features and reduce loss of information that
easily occurs in long sequence processing. At same time, with
this sequence segmentation and parallel processing mechanism,
we can effectively reduce the average time overhead of temporal
feature extraction.

Furthermore, considering both past and future contextual
temporal correlations of signal sequence, we make use of a
bidirectional LSTM (BiLSTM) scheme to enhance the extracted
local temporal features {f1, f2, . . ., fn}. As illustrated in Fig. 11,
BiLSTM takes the ordered feature sequence {f1, f2, . . ., fn}

as input. Then we get the enhanced local temporal features
{f̃1, f̃2, . . ., f̃n} which involve both past and future contextual
temporal dependencies. The bidirectional LSTM has same state
equations as Equation 7-13, but uses both forward and backward
hidden states at each timestep as following:

f̃i = BiLSTM([hf
i ,h

b
n−i], fi), (14)

hf
0 (x) = hb

0(x) =
1√
2π

e−
x2

2 , (15)

wherehf andhb denote the forward and backward hidden states
respectively. And we initialize the hidden state with a standard
Gaussian Function.

Finally, we take enhanced local temporal features as input and
utilize a high-level LSTM to extract global temporal featureFT ,
then map FT to fixed size for feature fusion.

D. Ensemble Learning Based Position Estimation

1) Motivations for Applying Ensemble Learning Mechanism:
In the supervised learning algorithm of machine learning, the
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goal is to learn a stable model with good performance. How-
ever, suffering from random noise or outliers of training data,
sometimes we can find several different models with distinct
predilection after training with different initial settings, which
almost give same accuracy on the training dataset. From a
statistical point of view, the effect of those factors can be reduced
when the amount of training data is large enough. For indoor
localization, considering inevitable existence of various random
noises and outliers in collected signals, we can repeat site survey
enough times to obtain more sufficient training data. So there
will be multiple redundant signal measurements for each survey
path in the trial site, and the effect caused by noise and outliers
can be effectively reduced though statistical method.

While the training data is sufficient enough (so that the effect
mentioned above is absent), however, it has to face another
challenge that computational cost is usually unacceptable when
dataset is enormous as the optimal training of neural networks is
proved to be NP-hard [39]. At same time, it’s also labor-intensive
and time-consuming to do vast repeated site surveys to obtain
sufficient enough training data which is usually redundant.

To address above, we employ ensemble learning mechanism.
With different initial training setting, we train proposed network
to get multiple independent models, which have different degree
of sensitivity to signal noise and outliers but almost share same
accuracy on training dataset after convergence. Then the esti-
mation algorithm will take all these models’ predictions into
consideration and make an average among prediction results so
as to reduce the risk of choosing single prediction with large
random error. The underlying idea is that even if one single
sub-model gets prediction with large error, other sub-models
can correct the error back. Thus we can efficient reduce large
deviations which usually caused by signal noise and outliers.

In this paper, we set different initial parameters for training
multiple independent models based on Gaussian distribution.
More specifically, for each layer of a training model, we set
initial parameters based on a Gaussian distribution as follows:

Paras ∼ N(μ, σ2), (16)

and its probability density function is defined as:

f(x) =
1

σ
√

2π
e−

(x−μ)2

2σ2 , (17)

whereμ ∈ [−1, 1] and σ2 ∈ (0, 10], which are chosen at random
from the corresponding range for each different training model.

Fig. 12 illustrates a schematic example of position esti-
mation in this situation. For an input signal sequence, we
can first obtain the corresponding initial prediction start-
ing location {p1, p2, . . ., p5} of multiple independent models
{model1,model2, . . .,model5} with different initial parame-
ters. And we use dotted line to indicate the convergence process
of model’s predicted position during iterative training, adopting
gradient descent optimization method. {p̃1, p̃2, . . ., p̃5} denote
the final prediction locations of those trained models after model
convergence and green star represents the corresponding ground
truth location. As we can see in Fig. 12, these models’ final
predictions more or less deviate from ground truth location
which mainly suffers from random noise and signal outliers.

Fig. 12. Schematic diagram of ensemble learning based localization that
training multiple independent models and integrating their prediction results
for joint position estimation.

Intuitively, integrating these independent location prediction
models, we can obtain a more accurate prediction of target
location by taking an average among their prediction results.

In summary, we apply ensemble learning mechanism in final
position estimation, and we train multiple different models
independently and combine them to generate a more robust and
comprehensive ensemble model, which is able to effectively re-
duce the impact of noise and outliers, achieving higher accuracy
and robustness without large amount of redundant training data
collection.
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2) Weighted k-NN Based Voting for Position Estimation:
Based on ensemble learning method, we train multiple models
independently with different initial settings. So for each input,
we can obtain multiple corresponding prediction locations. To
further improve the accuracy and robustness of prediction, we
design a weighted k-nearest neighbors (k-NN) based algorithm
on those prediction results to calculate the final estimation
location for the input. First of all, we need to find a heuristi-
cally optimal number k of nearest neighbors, and the details
are shown in Algorithm 1. Then we select k models with the
smallest average validation error from all trained models and
calculate final prediction location among those selected models’
prediction results.

More specifically, as shown in Algorithm 2, suppose we have
selected k models out of r trained models (r denotes the preset
number of trained models), then for an input sequence, we get
the corresponding prediction locations of the selected models:
{L1,L2, . . .,Lk}. Furthermore, we set adaptive weight for each
selected model’s prediction according to model’s average vali-
dating error. And we choose Gaussian function as Error-Weight
transition function and then make a normalization as follows:

w̃i =
1√
2π

e−
di

2

2 , (18)

wi =
w̃i∑k
j=1 w̃j

, (19)

where wi is the weight of the corresponding prediction and di is
the average validation error of the corresponding model, and i ∈
{1, 2, . . ., k}. Then, we calculate weighted average of k selected
models’ prediction locations:

L =

k∑
i=1

wiLi, (20)

Finally, we get a more accurate final prediction location L for
the input geomagnetic sequence.

E. Time Complexity Analysis

As an important requirement in indoor localization appli-
cation, real-time performance is always need to be paid more
attention. Traditional fingerprint-based approaches mostly rely
on signal matching strategy utilizing discrete signal observation
or successive signal sequence. And the time overhead for local-
ization largely depends on the matching algorithm and the size
of database used for matching.

Dynamic Time Warping (DTW) is a widely used technique to
measure the similarity between two sequences, which considers
both stretching and squeezing the sequences to align them. Mak-
ing use of signal sequence as input, some approaches [26], [29],
[40] leverage DTW algorithm as signal matching strategy for
indoor localization. DTW algorithm uses dynamic programming
to calculate the similarity between two time sequences, and the
time complexity can be expressed as:

O(n2), (21)

where n denotes the length of the input sequence. For indoor
localization, it needs to compare observed signal sequence with
each signal fingerprint in pre-established database though itera-
tion and infer current location with the most similar geo-tagged
fingerprint. Suppose the size of the database is m (the number
of fingerprints that need to be matched with), then the time
complexity for localization based on this mechanism:

O(m · n2), (22)

As discussed above, those iterative matching-based ap-
proaches usually incur high time overhead during localization,
especially when it needs to use relatively long signal sequences
for sufficient accuracy or the database for matching is enormous
in the large indoor scene.

In this paper, ST-Loc employs deep learning technique to es-
tablish an end-to-end system and realize offline learning and on-
line calculation of proposed localization model. Although deep
learning methods is data-hungry which usually need large num-
ber of trainings to learn sufficient knowledge, time-consuming
offline training only need to be conducted once generally. Then
the online localization can continuously proceed without extra
time-consuming model training. That’s once and for all. On the
other hand, we always pay more attention to online localiza-
tion performance in actual application. And the trained model
contains only simple linear and nonlinear transformation units,
and the computational complexity of these operations is also
lower. In addition, the computational complexity of employing
trained model is also independent of the size of the database.
Therefore, ST-Loc is able to greatly reduce the time overhead
during online localization compared with matching-based ap-
proach mentioned above, providing a guarantee for real-time
localization service.

Compared with other approaches [31], [33] which utilize
deep learning technique, ST-Loc further devise a hierarchical
structure for temporal feature extraction as elaborated in Sec-
tion IV-C. Through the sequence segmentation and parallel
processing mechanism, each basic LSTM unit in the network
processes a relatively shorter sequence, and the unit at lower
level can pay more attention to the local temporal feature of the
corresponding subsequence. At same time, parallel processing
can also effectively reduce the time overhead of the network.

V. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ST-Loc and
state-of-the-art comparison schemes. We present dataset and
experimental settings in Section V-A, followed by comparison
schemes and evaluating metrics in Section V-B. Then the ex-
perimental results are illustrated in Section V-C and we finally
analyze system overhead in Section V-D.

A. Dataset and Experimental Settings

We have conducted extensive experiments in three trial sites
including an office area in our university, a spacious food court
and a supermarket. The site plans are shown in Fig. 13. The
supermarket area covers around 720 m2, the office area covers
around 2,800 m2 and the food plaza is more spacious which
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Fig. 13. Floorplans of the trial sites.

covers around 3,500m2. Without loss of generality, we also con-
duct our experiments on a variety of mobile devices (including
Samsung Galaxy S7, Samsung Galaxy C5, Huawei Mate 9 and
Xiaomi Mi 6). Meanwhile, we also invite multiple volunteers
to participate in our experiments to evaluate the performance of
ST-Loc.

Suffering from signal instability and multipath fading effect,
RSS (Received Signal Strength) usually needs to be measured
several time. Compared with RSS, geomagnetic signal is much
more easier to collect, benefiting from stable geomagnetic signal
distribution. And most mobile devices are equipped with high
sensitivity magnetic field sensors which are able to achieve
sampling frequency up to 100 Hz. In experiments, the signal
sampling frequency of all devices is set to 50 Hz to achieve
trade-off.

In order to build dataset for experiments, we develop a signal
collection application based on Android system. The application
collects various signals including geomagnetic signal strength
and IMU (Inertial Measurement Unit) sensor data (IMU data is
only needed for some comparison schemes). When surveyors
walk though a preset survey path, the application will collect
various signals along the path, then we can obtain a mixed signal
sequence which corresponds to the survey path:

{v1,v2,v3, . . .}, (23)

where vi = 〈mi,ai,gi,oi〉 in which mi denotes geomagnetic
signal strength and ai,gi,oi represent acceleration vector, gy-
roscope angles and orientation angles respectively.

In terms of dataset annotation for experiments, the collected
geomagnetic sequence covers a path, so we label the sequence
with the ground truth location coordinate where the last geo-
magnetic sample is collected. More specifically, we mark the
locations of starting and ending points of each survey path based
on nearby landmarks, e.g., doors, corners. Then, we label the
ending locations of each signal segment based on distances to
nearest landmarks. Note that in indoor trial sites, the number of
these landmarks are usually large. Our data annotation benefits
from this with higher accuracy. For training dataset, we have
designed dense survey paths (denoted by red solid lines in
Fig. 13) in public areas according to the floorplans of three trial
sites and we collect signal sequences along those survey paths in
three trial sites for training, respectively. As for testing dataset,
experiment participants are requested to walk though some
randomly chosen paths with mobile device in trial sites, then we
use signal sequences collected in three trial sites for evaluation,

TABLE II
DATASETS ESTABLISHED IN THREE TRIAL SITES

TABLE III
BASELINE TRAINING PARAMETERS IN EXPERIMENTS

respectively. Table II presents the detailed information of the
datasets in three trial sites.

We train proposed ST-Loc separately with training dataset
built for each trial site and evaluate its performance in corre-
sponding site, respectively. And baseline training parameters
are presented in Table III. We choose PyTorch as deep learning
framework in experiments and use Adam as deep network’s
optimizer. MSELoss is set as loss function. All experiments are
performed on a simulation server installing Ubuntu 16.04 system
with four Nvidia RTX 2080Ti GPU cards, an Intel Xeon E5-2640
CPU and 128 GB memory.

B. Comparison Schemes and Evaluating Metrics

We compare ST-Loc with following state-of-the-art indoor
localization methods which use geomagnetic signal as input:
� MaLoc [27] devises a reliability-augmented particle filter

to improve the accuracy and robustness of position es-
timation. Furthermore, it proposes an adaptive sampling
algorithm to reduce computation overhead so as to improve
the overall usability.

� Magicol [29] overcomes the low discernibility of the
geomagnetic signal by vectorizing consecutive geomag-
netic measurements. It calibrates user positions with a
bi-directional particle filter and uses the vectors to shape
the particle distribution in position estimation process.
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Fig. 14. Cumulative distribution function of indoor localization error in the
office area.

� RNN-4 [33] also takes geomagnetic sequence as input. And
it trains a standard RNN to predict user position. In our
experiment, we build a deeper network with 4-layer RNN
as a comparison scheme.

Moreover, in order to evaluate the effectiveness of core
function components in proposed model including spatial and
temporal feature extraction modules, we also take the following
variants of the model into comparison:
� ST-Loc-ns: We remove the spatial feature extraction mod-

ule from the network and only use temporal features for
localization, by which we can validate the effectiveness of
extracted spatial features.

� ST-Loc-nt: On the contrary, to validate the effectiveness
of extracted temporal features, We remove the temporal
feature extraction module from the network.

We make use of overall mean localization error e as uniform
evaluation metric in experiments. Suppose we haveN test cases,
ground truth locations of which are x1,x2, . . .,xN . And the
estimation position of each corresponding test case is denoted
by x̂n(1 ≤ n ≤ N). Then the overall mean localization error e
is defined as following:

e =
1
N

N∑
n=1

||x̂n − xn||2, (24)

where || · ||2 denotes L2 norm.

C. Experimental Results

To evaluate the performance of ST-Loc and state-of-the-art
competing approaches, we conduct extensive experiments in
three typical trial sites. Fig. 14, Fig. 17 and Fig. 20 illustrate
the CDF of localization errors in office area, food plaza and
supermarket area respectively. And Table IV presents mean
localization error of different approaches (including prelimi-
nary version [34] of ST-Loc) in three trial sites. The results
demonstrate that proposed ST-Loc is able to achieve higher
localization accuracy than competing schemes in all three trial
sites. This is mainly because ST-Loc converts original geomag-
netic sequence into spatial and temporal representations and
considers both corresponding location correlations. Based on
this, ST-Loc extracts and generates more comprehensive and
distinctive spatial-temporal fusion features for localization, thus
is able to achieve higher overall accuracy. Meanwhile, ST-Loc

Fig. 15. Mean localization error versus models trained with different initial
parameters in the office area.

Fig. 16. Mean localization error versus different k in weighted k-NN based
location estimation in the office area.

TABLE IV
MEAN LOCALIZATION ERROR VERSUS DIFFERENT APPROACH IN THREE TRIAL

SITES (M)

does not make use of the motion sensors of mobile devices, so
there’s no need to consider the impact of complicated user’s
behaviors on the motion sensors, thus avoiding accumulative
error.

However, comparing the localization results in three sites
which are shown in Fig. 14, Fig. 17 and Fig. 20, we find that
ST-Loc performs better in office area. This is because office area
has many narrow corridors and partitions, and a narrow indoor
environment like that will cause strong signal variations locally,
which provides much promise for more accurate localization.
Meanwhile, we notice that the result in supermarket (as shown
in Fig. 20) has long tails compared with the results in other two
trial sites. It is because that the supermarket area is not only
more spacious, but its indoor environment is highly similar as
shown in Fig. 13(c). For that reason, it more likely has similar
geomagnetic disturbances in different local areas, which incurs
signal ambiguity. Thus, the localization error in some cases is
larger compared to constrained area like office environment.
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Fig. 17. Cumulative distribution function of indoor localization error in the
food plaza.

Fig. 18. Mean localization error versus models trained with different initial
parameters in the food plaza.

Fig. 19. Mean localization error versus different k in weighted k-NN based
location estimation in the food plaza.

To further enhancing the accuracy and robustness of ST-Loc,
we apply ensemble learning mechanism in proposed network.
As shown in Fig. 15, Fig. 18 and Fig. 21, we trained 20 models
with different initial parameters for each trial site respectively as
we discussed in Section IV-D. For a single model, different initial
parameters lead to distinguishing results, which mainly suffers
from input signal noise and outliers. Therefore, we take multiple
models’ prediction result into consideration. Furthermore, We
devise weighted k-NN based voting among those models, and
different values of k lead to different results in three trial sites as
illustrating in Fig. 16, Fig. 19 and Fig. 22, which mainly depends
on corresponding indoor environment. Looked from the overall,
the experimental results above demonstrate that ST-Loc is able
to achieve higher accurate and more robust localization results
with ensemble learning mechanism compared to preliminary
version of ST-Loc. However, we notice that the diversity between
learners is smaller with the increase in individual learner, and
ensemble learning accuracy is worse, which mainly suffers from

Fig. 20. Cumulative distribution function of indoor localization error in the
supermarket area.

Fig. 21. Mean localization error versus models trained with different initial
parameters in the supermarket area.

Fig. 22. Mean localization error with different k in weighted k-NN based
location estimation in the supermarket area.

the limitation of dataset [41]. Therefore, we can choose a optimal
value k for each specific trial site according to experimental
validation results. For example, optimal k is set to 9 for the food
plaza according to results shown in Fig. 19.

In order to evaluate the effectiveness of extracted features and
feature fusion, we collect geomagnetic measurements at 101
positions which are uniformly distributed in the office area. And
we take advantage of pairwise matrix to evaluate the differences
of raw signal or extracted features between these 101 selected
location. The results are illustrated in Fig. 23 respectively, in
which dark color indicates low degree of difference and light
color indicates high degree of difference. And the average val-
ues of the difference pairwise matrix for raw signal, extracted
spatial feature, extracted temporal feature and fusion feature
are 0.18, 0.29, 0.38, 0.43, respectively. As shown in Fig. 23(a),
raw geomagnetic signal at some distant locations can be similar
(around location 60 to 80), leading to large localization error in
the approach based on signal fingerprint matching. In ST-Loc,
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Fig. 23. Signal/Feature differences between the locations which are uniformly selected in an office area. (a) Raw geomagnetic signal. (b) Extracted spatial feature.
(c) Extracted temporal feature. (d) Fusion feature.

Fig. 24. CDF of localization error with different devices in office area.

we convert raw geomagnetic signal into spatial and temporal rep-
resentations and extract the corresponding features respectively.
And as shown in Fig. 23(b) and (c), the degree of difference be-
tween extracted spatial/temporal features in these locations has
improved significantly, compared with the result in Fig. 23(a).
On the other hand, comparing Fig. 23(b) and (c), we can find
that spatial features imply more regional differences between
the locations and temporal features reflect more consecutive
differences between the locations, which confirms our previous
analysis in Section IV. Finally, as presented in Fig. 23(d), we are
able to further increase the distinctiveness of features and enlarge
the differences between distant locations by fusing the spatial
and temporal features together (many dark areas are turned into
light in the figure after feature fusion). So the results prove that
our framework is able to enhance the distinctiveness of features
for localization.

Fig. 24 illustrates CDF of localization error when using
different devices for localization in office area. As discussed
in Section IV-A (1), different devices usually have different
calibrations for magnitude of geomagnetic field intensity (pre-
sented in Fig. 4). However, the experimental result shows that
ST-Loc is able to achieve high localization accuracy even with
those different devices. It demonstrates that ST-Loc is able to
effectively solve the device heterogeneity problem. The reason
is that ST-Loc uses gradient sequence as input instead of raw
geomagnetic sequence, using the fluctuation trend of signal
sequence as location clues to avoid the extra effort to calibrate
different device or sensors to a uniform standard.

Fig. 25 shows the distribution of the localization errors with
different experimental participants (include both male and fe-
male, height from 163 cm to 181 cm). And the results show
that proposed ST-Loc achieves almost comparable localization

Fig. 25. The distribution of localization errors with different users in office
area.

Fig. 26. Time cost for temporal feature extraction with different sequence
length.

accuracy even with different users while the mean localization
errors are all less than 1 m. This is because ST-Loc conducts
data pre-processing for collected signal sequences before local-
ization to resolve the user heterogeneity problem, which has
been elaborated in detail in Section IV-A (1). Thus, ST-Loc is
able to achieve high applicability with different users.

Fig. 26 presents the time consumption for temporal fea-
ture extraction of ST-Loc-ns and the basic LSTM model. It
demonstrates that proposed framework (illustrated in Fig. 11)
achieves lower time consumption in temporal feature extraction,
compared with the basic LSTM model. Meanwhile, as we use
longer input geomagnetic sequence, the time consumption of
the LSTM model increases while the time cost of ST-Loc-ns
increases more slowly. This is because we devise a hierarchical
structure and employ a segmentation and parallel processing
mechanism. Therefore, the time overhead with the segmented
subsequences is relatively lower compared with the original long
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Fig. 27. Mean localization error with different length of input magnetic
sequence.

Fig. 28. Mean localization error with different layers of ResNet in ST-Loc-nt.

sequence. On the other hand, parallel processing of the shorter
subsequences also reduces the loss of feature information that
easily occurs in serial processing of the long sequence.

Fig. 27 shows the localization accuracy when use different
number of geomagnetic readings (the length of input geomag-
netic sequence). As we can see, ST-Loc is able to achieve higher
accuracy with more geomagnetic readings. The reason is that
more signal readings (longer signal sequence) usually cover
longer path with more local unique signal fluctuation. Hence the
neural network is able to learn more location clues from those
unique fluctuation. However, when the number of geomagnetic
readings exceeds 500, the decrease of error slows down, which
means that we have sufficient information to extract location
clues with 500 geomagnetic readings. But more readings or
longer sequences mean that it will take more time to collect
and calculate for localization. Therefore, to achieve trade-off
between time overhead and accuracy, we take the 500 signal
readings as input (the length of input geomagnetic sequence is
set to 500).

Fig. 28 presents the mean localization error when making use
of different depths of RseNet in ST-Loc-nt. The result shows
that the overall localization error decreases when use deeper
ResNet. This is mainly because deeper network which have
more layers is more capable to learn a robust feature from the
input. However, we notice that the average localization error
increases slightly when the number of the network layers reaches
50, which indicates that the network may have over-fitting. At
the same time, deeper network also requires more time for
training to convergence. Therefore, to achieve trade-off between
training time, training effort and accuracy, we take advantage of
ResNet-34 in proposed model.

Fig. 29. Mean localization error with different mini-batch sizes during train-
ing.

TABLE V
TIME OVERHEAD VERSUS LOCALIZATION APPROACHES

Fig. 29 illustrates the change process of localization error
during training when applying different mini-batch sizes. As
shown in the figure, the error decreases quickly in the first 100
epochs, then the decrease slows down. Finally model training
converges after 500 epochs. Applying small mini-batch size
means that ST-Loc will run more iterations in each epoch. So
the model learns to adapt training data via more forward and
backward propagations in each epoch, thus achieving smaller
localization error in initial epochs. But small mini-batch size
also leads to less local training data in each iteration, causing
more fluctuations during training consequently. On the contrary,
the number of iterations in each epoch is fewer when employing
larger mini-batch size, leading to larger localization error in
initial epochs but with fewer fluctuations. Therefore, to achieve
trade-off, we set mini-batch size to 125 and the total number of
epochs is 500 in our experiments.

D. System Overhead

To evaluate the system overhead of ST-Loc, we have imple-
mented it under client-server mode. The client is developed
on Android system. And in experiments, the signal sampling
frequency of the client is set to 50 Hz, which means that 50
signal samples (less than 2 KB) are sent to server every second.
Correspondingly, the server will apply pre-trained localization
model to estimate the current position after receive sufficient
signal data from the client, then send back the results.

We use a 100 Mbps Wi-Fi router to provide the network
connection, via which the average network transmission time
is less than 0.0033 s in experiments. Based on the above set-
tings, we evaluate the localization responding time of ST-Loc
and state-of-the-art competing approaches. Specifically, we take
more than 1000 random chosen test cases to calculate the the av-
erage responding time as evaluation indicator. And the results are
shown in Table V, which demonstrates that ST-Loc outperforms
competing approaches with only 0.036 s average responding
time and it’s enough to achieve real-time localization services.
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In term of energy consumption, we use the application power
consumption records of the operating system as evaluation crite-
rion. In experiments, we record the system power consumption
of the client, which is most related to users. After 30 minutes of
the simulated localization with ST-Loc, we record 6% drop in the
battery status of test phone (Samsung Galaxy S7e with battery
capacity of 3600 mAh). So the total energy consumption is
around 216 mAh and the average power consumption per minute
is 7.2 mAh. Therefore, using the client implemented based on
ST-Loc will not consume too much power for location query. On
the other hand, the current version of the client application has
not yet been optimized well for energy efficiency and the signal
sampling frequency is relatively high. So we can reduce the
energy consumption by reducing the signal sampling frequency
when collected signal data sufficiently meet actual needs of
localization.

VI. CONCLUSION

Fingerprint-based indoor localization with either spatial or
temporal location clues are prone to signal ambiguities or high
time overhead, which hinders its widespread application. In view
of the above, we propose to convert a single signal sequence into
multiple adaptive representations, and extract features from each
representation to form distinctive location features for accurate
localization. In this paper, we use geomagnetic sequence as
inuput. Firstly, we convert sequential geomagnetic inputs into a
heatmap, where we use convolutional operations to find spatial
correlations. At same time, we devise a hierarchical bidirectional
structure to extract temporal correlations with both past and
future context, achieving lower time overhead. Then, we fuse the
spatial and temporal features together to enhance the distinctive-
ness of location features. Finally, we employ ensemble learning
mechanism and design a weighted k-NN based location estima-
tion algorithm to further enhance the accuracy and robustness.
We have conducted extensive experiments in three different trial
sites, the fifth floor of a narrow office building, the third floor of a
mall and the second floor of a supermarket. Experimental results
in these sites show that our model reduces localization error by
a wide margin and achieves lower time overhead compared with
other state-of-the-art competing schemes.

REFERENCES

[1] K. Wen, K. Yu, Y. Li, S. Zhang, and W. Zhang, “A new quaternion kalman
filter based foot-mounted IMU and UWB tightly-coupled method for
indoor pedestrian navigation,” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 4340–4352, Apr. 2020.

[2] Y. Zhuang, Q. Wang, M. Shi, P. Cao, L. Qi, and J. Yang, “Low-power
centimeter-level localization for indoor mobile robots based on ensemble
kalman smoother using received signal strength,” IEEE Internet Things J.,
vol. 6, no. 4, pp. 6513–6522, Aug. 2019.

[3] T. Kulshrestha, D. Saxena, R. Niyogi, and J. Cao, “Real-time crowd mon-
itoring using seamless indoor-outdoor localization,” IEEE Trans. Mobile
Comput., vol. 19, no. 3, pp. 664–679, Mar. 2020.

[4] X. Liu, Y. Jiang, P. Jain, and K.-H. Kim, “TAR: Enabling fine-grained
targeted advertising in retail stores,” in Proc. 16th Annu. Int. Conf. Mobile
Syst., Appl., Serv. ACM, 2018, pp. 323–336.

[5] P. Chen, J. Shang, and F. Gu, “Learning RSSI feature via ranking model
for Wi-Fi fingerprinting localization,” IEEE Trans. Veh. Technol., vol. 69,
no. 2, pp. 1695–1705, Feb. 2020.

[6] M. Zhou, Y. Wang, Y. Liu, and Z. Tian, “An information-theoretic view
of WLAN localization error bound in GPS-denied environment,” IEEE
Trans. Veh. Technol., vol. 68, no. 4, pp. 4089–4093, Apr. 2019.
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