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Timely forecasting the urban anomaly events in advance is of great importance to the city management and planning. However,
anomaly event prediction is highly challenging due to the sparseness of data, geographic heterogeneity (e.g., complex spatial
correlation, skewed spatial distribution of anomaly events and crowd flows), and the dynamic temporal dependencies.

In this study, we propose M-STAP, a novel Multi-head Spatio-Temporal Attention Prediction approach to address the
problem of multi-region urban anomaly event prediction. Specifically, M-STAP considers the problem from three main aspects:
(1) extracting the spatial characteristics of the anomaly events in different regions, and the spatial correlations between
anomaly events and crowd flows; (2) modeling the impacts of crowd flow dynamic of the most relevant regions in each time
step on the anomaly events; and (3) employing attention mechanism to analyze the varying impacts of the historical anomaly
events on the predicted data. We have conducted extensive experimental studies on the crowd flows and anomaly events data
of New York City, Melbourne and Chicago. Our proposed model shows higher accuracy (41.91% improvement on average) in
predicting multi-region anomaly events compared with the state-of-the-arts.
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1 INTRODUCTION
Urban anomaly events are the unusual events which may incur or be accompanied by the abnormal movement of
crowd flows. For example, the anomaly events like vehicle collision, noise incident, crime, and service request
in urban cities are the typical factors leading to or coming with the sudden and long-term change of crowd
flows around the location of event. The occurrence of these anomaly events often threatens public property
and security, driving the demand for urban anomaly events evaluation and prediction. With the advances in
large scale computing infrastructures, a diverse of spatial and temporal data associated with urban crowd flow
dynamics and urban anomaly events are generated in large scale. Using these datasets to predict the occurrence
of urban anomaly event in advance can significantly improve the city safety management, risk assessment, traffic
management and emergency planning and procedures.
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Fig. 1. Motivations of M-STAP in urban anomaly prediction.

Fig. 1 illustrates an example of urban anomaly event prediction application. In the leftmost sub-figure of Fig. 1,
the regions with anomaly events are usually more crowded than other regions when in the absence of or in the
early stage of anomaly events. By learning and associating the historical data of crowd flows and anomaly events,
we aim at predicting the incoming anomaly event distributions in specific area ahead of time. Users will receive
alerts where the anomaly events will occur, and then be steered towards the surrounding safe or shelter areas
(the upper left and lower right regions in the leftmost sub-figure of Fig. 1).

To predict the anomaly events and enable the aforementioned crowd redistribution, it is essential to learn
the spatio-temporal crowd flow features. Nevertheless, the spatial and temporal correlations between various
anomaly events, different crowd flows, and anomaly events and crowd flows can be very complex. Along with
the occurrence of anomaly events, the crowd flow distribution varies in different regions and different stages
of the anomaly events. From the spatial perspective, the crowd flow movements in the surrounding regions of
anomaly event locations can always indicate the occurrence of the events. However, the range of the surrounding
regions and the degree of impact by the crowd flows on the anomaly events are often hard to model.

On the other hand, the incurred movement of the crowd flows may happen in different stages of the anomaly
events. Capturing the spatio-temporal correlations of crowd flows and anomaly events between different regions
can be very useful tool for anomaly event prediction. Such correlations between crowd flows and anomaly events
also exist in the anomaly events from multiple regions. The co-occurrence of the anomaly events in a single
region can be influenced by the anomaly events from other regions with different degrees. At different periods
the correlations may vary. Capturing the spatial influence scale and the corresponding influence degree can be a
highly challenging task. In addition, predicting multi-region anomaly events is very challenging due to sparsity in
the crowd flows and anomaly events. The limited observation will significantly degrade the prediction accuracy.
To address the above challenges, we propose M-STAP, a Multi-head Spatio-Temporal Attention Prediction

approach for multi-region anomaly events. The proposed model jointly takes in the heatmaps of recent historical
crowd flows and anomaly events as inputs, and outputs the future occurrences of anomaly events in each region
of a city. In particular, we have designed three main modules within M-STAP, as illustrated in Fig. 1, i.e., (1)
Two-dimensional Spatial Attention Mechanism (TDSAM) to model the spatial characteristics of anomaly events and
crowd flows; (2) Crowd Flow Spatial Attention Mechanism (CFSAM) to select the crowd flows at the most relevant
regions in each time step to calibrate the anomaly events of each region; and (3) Temporal Attention Mechanism
(TAM) to extract the temporal patterns of the anomaly events and differentiate the impacts of anomaly events
from different historical time steps.
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Our main contributions in M-STAP are summarized as follows:

(a) Learning spatial-temporal correlations between anomaly events & crowd flows: In this study, we consider
the spatial dependencies from two aspects, namely the spatial dependencies among anomaly events from
different regions, and the spatial correlations between anomaly events and crowd flows. We also take into
account the temporal correlations of the anomaly events from different time steps.

(b) Predicting multi-region anomaly events by multi-head spatio-temporal attention: To capture the aforemen-
tioned spatio-temporal dependencies, we propose a multi-region anomaly events prediction model, M-STAP.
M-STAP extracts the spatial feature maps of anomaly events by concatenating the global spatial feature
maps fromMulti-Head Self-Attention Mechanism (MHSAM) and the local spatial feature maps from traditional
Convolution Operation in TDSAM, using both the anomaly event data and crowd flow data. Specifically,
each attention head in MHSAM focuses on extracting the spatial correlations of anomaly events among all
regions given the citywide anomaly event and crowd flow data.

(c) Extensive experimental studies on real-world crowd flow data & anomaly events: To evaluate our proposed
model, we conduct extensive experiments on the Foursquare check-in data, 311 noise complaint data, 311
service request data, vehicle collision data and crime complaint data from New York City (NYC), pedestrian
counting data and parking data from Melbourne, and bike-sharing usage data and crime data from the
City of Chicago. The results show that our proposed model outperforms other baselines in multi-region
anomaly event prediction and achieves 41.91% improvement on average compared with the baselines.

• Technical & Societal Implications: Our proposed work brings the following societal and technical implica-
tions and potential benefits for real-world applications. (1) The proposed approach leverages the urban mobility
data, which can be easily and timely harvested from the existing mobile devices or social networks, to support
proactive and accurate monitoring of the urban anomalies. (2) The novel model designs leveraging the novel at-
tention mechanisms can benefit existing urban mobility studies [4, 9, 22, 37], addressing the complex correlations
between different urban features and supporting subsequent more proactive decision makings and responses.
(3) By incorporating our M-STAP into the existing urban mobility platforms [9] such as the mobile map services,
car pooling [12], and bike-sharing [13], we can enhance their robustness and adaptivity under urban anomaly
events. (4) The multi-region anomaly prediction approach and data analytics insights can assist the city planners
and urban computing practitioners in designing and implementing related mobile and ubiquitous systems in
handling massive crowds and urban anomalies, balancing the resource allocation [25], and advancing the citywide
socioeconomic evolution [6].

The rest of the paper is organized as follows. We first overview the datasets in Sec. 2, followed by the problem
formulation and the details of our proposed core method M-STAP in Sec. 3. We present our experimental results
in Sec. 4. Afterwards, we will review the related work in Sec. 5, and finally conclude in Sec. 6.

2 DATA OVERVIEW FOR M-STAP

In this section, we first overview the dataset used for M-STAP’s learning in Sec. 2.1, followed by the data analysis
in Sec. 2.2.

2.1 Dataset Overview
In this work, we study on datasets from three cities, New York City (NYC) and City of Chicago, US, and Melbourne,
Australia. We summarize the datasets in Tab. 1, and provide an example of one motor vehicle collision record in
Tab. 2. We briefly present the datasets as follows.
• Crowd Flow/Mobility Data: We have collected the NYC check-in, Melbourne pedestrian counting, and Chicago
bike-sharing usage for our model inputs. Specifically, we have:
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Table 1. Crowd flow and anomaly event datasets from NYC, Melbourne, and Chicago.

City Data Type Data Description Geographic Bounding Box
Range

Total
Records

NYC

Crowd Flow Check-ins User id, latitude, longitude,
timestamp

[40.55085°N, 40.98833°N ],
[73.68382°W, 74.27476°W ]

115,394

Anomaly Event

Motor Vehicle
Collisions

Latitude, longitude, timestamp,
vehicle types, casualties

[40.55085°N, 40.91288°N ],
[73.70055°W, 74.25453°W ]

24,468

Crime
Complaints

Latitude, longitude, timestamp,
offense type

[40.55085°N, 40.91504°N ],
[73.68478°W, 74.25493°W ]

204,946

311 Service
Requests

Latitude, longitude, timestamp,
requested service type

[40.55094°N, 40.91134°N ],
[73.70140°W, 74.25208°W ]

82,608

311 Noise
Complaints

Latitude, longitude, timestamp [40.55087°N, 40.91104°N ],
[73.70223°W, 74.25407°W ]

95,217

Melbourne Crowd Flow Pedestrian
Counts

Latitude, longitude, timestamp,
hourly counts

[37.80759°S, 37.82044°S],
[144.96142°E, 144.97489°E]

67,108,088

Anomaly Event On-street Car
Parking

Latitude, longitude, timestamp,
street name

[37.80759°S, 37.82044°S],
[144.96142°E, 144.97489°E]

9,171,718

Chicago Crowd Flow Bike Usage Latitudes, longitudes,
timestamps, station ids of start
station and end station of a trip

[41.73664°N, 42.06399°N ],
[87.54938°W, 87.80287°W ]

5,029,240

Anomaly Event Crime Events Latitude, longitude, timestamp,
crime type

[41.73664°N, 42.06399°N ],
[87.54938°W, 87.80287°W ]

117,018

Table 2. An example of anomaly event (motor vehicle collision).

Latitude Longitude UTC Timestamp Vehicle type Casualties
40.810318°N 73.943634°W 12/14/2018 18:45:00 Station Wagon/Sport Utility Vehicle 0

(1) NYC Check-in Data: In this study, we utilize the check-in data of NYC during 2012/04/02 – 2012/08/22 to
indicate the movement of crowd flow. There are totally 115,394 records of check-ins. Each check-in record
includes the information of user id, location, and check-in timestamp.

(2) Melbourne Pedestrian Count Data:We utilize the pedestrian count data during 2015/08/01 – 2015/12/31
to represent the crowd flow movements in Melbourne. The count records are composed of information of
hourly counts of the pedestrians around each station, the corresponding timestamp, and the location.

(3) Chicago Bike-Sharing Usage Data: For Chicago, we consider the bike-sharing usage data1 during
2016/04/01 – 2016/09/31 as the input crowd mobility data for M-STAP. A completed trip record in the data
includes the key information of the start and end stations’ ids, the pick-up and drop-off locations of the
stations, and the corresponding timestamps.

Given above datasets, we show the heatmaps of the crowd flow distributions in NYC, Melbourne, and Chicago in
Fig. 2.
• Anomaly Event Data: We have further collected several anomaly event datasets from NYC2, Melbourne, and
Chicago:

1https://www.divvybikes.com/
2https://opendata.cityofnewyork.us/
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(a) Check-ins in NYC.
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(b) Pedestrian counts in Melbourne.
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(c) Bike-sharing usage in Chicago.

Fig. 2. Visualization of crowd flow data in NYC during 2012/07/01 — 2012/08/22, Melbourne during 2015/08/01 -– 2015/12/31,
and Chicago during 2016/04/01 — 2016/09/31.

(1) NYCMotorVehicleCollisionData:This dataset coversmotor vehicle collision3 in NYC during 2012/07/01
– 2012/08/22, including 24,468 collision records. The information of each collision record mainly includes
location, collision time, vehicle types, and the casualties.

(2) NYC Crime Complaint Data: This data includes all valid felony, misdemeanor, and violation crimes
reported to the NYC Police Department. The data are chosen in 2012/04/02 – 2012/08/22 and composed
of 204,946 records. Each record includes its location coordinates, timestamp, and the offense types of the
complaint.

(3) NYC 311 Service Request Data: Service request data4 are the 311 calls or the service requests of NYC.
There are 82,608 request records in the data during 2012/04/02 – 2012/08/22. Each of the logged request
contains the service request location, request timestamp, and the requested service type.

(4) NYC 311Noise Complaint Data: 311 Noise complaints5 of NYC during 2012/04/02 – 2012/08/22, including
95,217 records. The detail information of each record are complaint location and timestamp.

(5) Melbourne On-street Heavy Parking Data: The chosen parking records are in time period of 2015/08/01
– 2015/12/31, including 9,171,718 parking records6 in Melbourne. The heavy parking records mainly log the
formation of location, the parking timestamp, and the street name. Since parking availability has been a
significant issue for many metropolitan cities, we aim at evaluating the heavy parking status to represent
the potential urban anomalous events.

(6) Chicago Crime Data: Here we use the crime data7 in the City of Chicago, collected in 2016/04/01 –
2016/09/31. Each crime record is composed of timestamp, type, latitude and longitude.

2.2 Spatial and Temporal Data Analysis
• Spatial Analysis: To illustrate the data distribution of crowd flows and anomaly events, we further visualize the
anomaly event data in Fig. 3 of all the three cities. Taking NYC as an example, from Figs. 3a, 3b, 3c, and 3d, we can
see that anomaly events are concentrated in the downtown areas (such as Manhattan Island and Brooklyn) of NYC.
Similar spatial distribution applies to the crowd flows of NYC as shown in Fig. 2a. These approximate distribution

3https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
4https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
5https://data.cityofnewyork.us/Social-Services/311-Noise-Complaints/p5f6-bkga
6https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-2015/apua-t2tb
7https://data.world/publicsafety/chicago-crime
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(a) 311 noise complaints.
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(b) 311 service requests.
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(c) Crime complaints.

-74.2 -74 -73.8 -73.6

Longitude

40.6

40.7

40.8

40.9

L
a
ti
tu

d
e

0

20

40

60

80

100

(d) Motor vehicle collisions.
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(e) Heavy parking events.
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(f) Crime events.

Fig. 3. Spatial distributions of (a) 311 noise complaints; (b) 311 service requests; (c) crime complaints in NYC during 2012/04/02
– 2012/08/22; (d) motor vehicle collisions in NYC during 2012/07/01 – 2012/08/22; (e) parking events in Melbourne during
2015/08/01 – 2015/12/31; and (f) crime events in Chicago during 2016/04/01 – 2016/09/31.
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Fig. 4. Temporal distributions of (a) check-ins and motor vehicle collision data in NYC during 2012/07/01 – 2012/08/22, (b)
pedestrian counts and parking events in Melbourne during 2015/08/01 – 2015/12/31, and (c) bike-sharing usage and crime
events in Chicago during 2016/04/01 – 2016/09/31.

patterns of anomaly events and crowd flows demonstrate the strong correlation between the occurrence of
anomaly events and the moving of crowd flows. Anomaly events are more likely to occur in the crowded regions.
• Temporal Analysis: Fig. 4 shows the average hourly dynamic within a day of crowd flows and anomaly events
of NYC, Melbourne, and Chicago. Generally, check-ins and anomaly events of motor vehicle collision in NYC are
shown to experience burst at daytime and drops at night. The bike-sharing usage and crime events in Chicago
generally increase after 9am, and may start to decrease after 7pm. The pedestrian counts and parking events
in Melbourne also follow the similar trend, which increase at around 8am and decrease at around 7pm. The
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Table 3. Important symbols and definitions in M-STAP.

Symbols Definitions Symbols Definitions
𝑙 Length of time steps of the inputs. 𝑡 Index of time step to predict.
Xin Anomaly event and crowd flow heatmap input of

TDSAM, with length of 𝑙 .
Xhout The anomaly event and crowd flow spatial feature

maps output of MHSAM.
𝑁 Number of attention heads. O𝑛 Output of the 𝑛th attention head, 𝑛 ∈ 𝑁 .

Xcout 𝑙 time steps of anomaly event spatial feature maps
from the Convolution Operation in TDSAM.

Xsout Anomaly event output of TDSAM with length of 𝑙
time steps.

𝐾 ′ 𝑙 time steps of output hidden states of CFSAM. E𝐻 , E𝑊 The relative height and width position matrices
between each two regions of the input heatmaps.

𝐻 ×𝑊 Size of input heatmaps in each time step of Xin. 𝐻 ′ ×𝑊 ′ Size of the predicted heatmap.
𝐹in Size of input filter. 𝐹out Size of output filter in each attention head in

MHSAM.
𝑝 Index of time steps in {𝑡 − 𝑙, . . . , 𝑡 − 1}. 𝐴𝑛

𝑝 Attention score matrix evaluating the spatial cor-
relation between each two regions in MHSAM.

𝐷𝑘 , 𝐷𝑣 Depth of the query/key projections and value pro-
jection in MHSAM.

Q,K,V Query, key and value projections in MHSAM.

Xcf 𝑙 time steps of crowd flow feature maps from
MHSAM.

Xout The anomaly event prediction result.

temporal similarity between crowd flows and anomaly events enables us to predict the occurrence of anomaly
event by analyzing the correlation between crowd flows and anomaly events.

3 M-STAP – MULTI-HEAD SPATIO-TEMPORAL ATTENTION FUSION DESGINS
We first present the problem formulation of M-STAP and the overview of architecture in Sec. 3.1. After that, we
respectively present our detailed designs on Two-Dimensional Spatial Attention Mechanism (TDSAM) in Sec. 3.2,
Crowd Flow Spatial Attention Mechanism (CFSAM) in Sec. 3.3, and Temporal Attention Mechanism (TAM) in
Sec. 3.4. We summarize the important symbols and their definitions in Tab. 3.

3.1 Problem Formulation and Architecture Overview
In this study, we first partition the city into a rectangular grid map with the shape of (𝐻,𝑊 ), where 𝐻 and𝑊
are the number of grids/regions of the height (latitude) and width (longitude) of the grid map. Given historical
anomaly event and crowd flow heatmaps Xin ∈ R𝑙×2×𝐻×𝑊 during the recent 𝑙 time steps {𝑡 − 𝑙, . . . , 𝑡 − 1}, M-STAP
aims at predicting the citywide anomaly event heatmap Xout ∈ R𝐻

′×𝑊 ′ in the time step 𝑡 . 𝐻 ′ and𝑊 ′ are the
number of regions of the height and width of the predicted heatmap.
As shown in Fig. 5, M-STAP is composed of three major components:

(1) Two-Dimensional Spatial Attention Mechanism (TDSAM): Correlations exist across regions with various
distances from each other. This component extracts the spatial feature maps from the anomaly event
heatmaps and the crowd flow heatmaps of the 𝑙 historical time steps. Specially, there are two sub-components
in TDSAM, i.e., a Multi-Head Self-attention Mechanism (MHSAM) and a Conventional Operation (Conv2D).
Instead of merely considering the local correlations among neighborhood regions, MHSAM evaluates the
pair-wise (global) spatial correlations among all the input regions in each time step. In the meantime, the
Convolution Operation extracts the local spatial correlations among the nearby regions. We concatenate the
extracted global spatial feature maps from MHSAM with the local spatial feature maps from the Convolution
Operation, and form the final spatial feature maps of TDSAM.
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(2) Crowd Flow Spatial Attention Mechanism (CFSAM): Crowd flows from different regions can impact or are
correlated with the occurrences of anomaly events in varying scales or degrees. We design CFSAM as an
attention mechanism to capture the most relevant regions of crowd flows for the anomaly events in each
time step.

(3) Temporal Attention Mechanism (TAM): The occurrences of anomaly events that are close in time share
similar contextual information. To model above, we design a temporal attention mechanism based on Long
Short-Term Memory (LSTM) to adaptively select the anomaly events of the most relevant historical time
steps for anomaly event prediction.

3.2 TDSAM – Two-dimensional Spatial Attention Mechanism
Within a period of time, the anomaly events and crowd flows in nearby regions interact closely as shown in Fig. 1.
Capturing the spatial correlations between different regions would help to understand the spatial dynamic trends
of anomaly events and crowd flows. However, merely considering the correlations among nearby regions might
ignore the information from distant regions. These derive the needs to capture the spatial correlations between
the anomaly events, and between the anomaly events and crowd flows across both the nearby and distant regions.

Anomaly Events

Crowd Flows

TDSAM TAM

CFSAM

Anomaly Events

Processed Hidden
States

WeatherHolidays Weekends

Crowd Flows

Processed

Anomaly Events
Prediction

Conv2D

MHSAM
Concat

Anomaly Events

Crowd Flows

TDSAM TAM

CFSAM

Anomaly Events

Processed Hidden
StatesCrowd Flows

Processed Anomaly Events
Prediction

Conv2D

MHSAM
Concat

Fig. 5. Framework overview of M-STAP, including TDSAM, CFSAM, and TAM.

In this section, we propose TDSAM to eval-
uate the near and distant spatial correla-
tions among regions. The details of two
sub-components in TDSAM, MHSAM (labeled
as TDSAM-(a) and TDSAM-(b)) and Convolu-
tion Operation (labeled as TDSAM-(c)), are
shown in Fig. 6. In particular, MHSAM ex-
tracts the global correlations among all re-
gions and Convolution Operation captures
the local spatial correlations among nearby
regions. In TDSAM, given anomaly events
and crowd flows heatmaps inputs Xin of
the 𝑙 time steps, where Xin ∈ R𝑙×𝐹in×𝐻×𝑊 and 𝐹in = 2, TDSAM outputs (i) the spatial feature maps Xsout ∈ R𝑙×𝐻

′×𝑊 ′

of anomaly events and (ii) the spatial feature maps Xcf ∈ R𝑙×𝐻
′×𝑊 ′ of crowd flows.

Instead of directly performing single feature extraction operation on the input heatmaps Xin, MHSAM captures
the global spatial features of the anomaly events and crowd flows 𝑁 times in 𝑁 attention heads with different data
projections. Similar to the seq2seqmodeling and image classification [2, 5, 27], we leverage multiple self-attention
mechanisms to enhance the model learning.
As shown in Fig. 7, after feeding the input heatmaps into 2D convolution, we project the anomaly event and

crowd flow heatmaps into 𝑁 different projections in MHSAM by using different query, key, and value matrices with
linear transformation. To obtain the spatial features of a specific region in each attention head, MHSAM calculates
the weighted correlations across this region and all other neighboring regions. The height and width (number
of regions) of the output feature maps in each attention head are the same as the input heatmaps. We then
concatenate the extracted feature map outputs from the 𝑁 attention heads and obtain the output feature maps
of MHSAM. Considering the locality nature of the citywide crowd flows and anomaly events, we then leverage
the Convolution Operation (Conv2D) to capture the local spatial feature maps of the crowd flows and anomaly
event heatmaps. Then, we concatenate the global and local spatial feature maps in each time step, which jointly
capture the spatial feature maps of both the anomaly events and crowd flows. We further apply a MaxPooling
operation on the crowd flow feature maps to generate the spatial features of crowd flows in each time step with a
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Fig. 6. Illustration of Two-Dimensional Spatial Attention Mechanism (TDSAM).

modified shape of (𝐻 ′,𝑊 ′). A 2D convolution operation is used to generate the final citywide anomaly event
feature maps of TDSAM using the concatenated heatmaps.
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Fig. 7. Illustration of Multi-Head Self-attention Mechanism (MHSAM), which takes in the crowd flows and anomaly event data
maps in time step 𝑝 as input.

We present the core designs with respect to different components in TDSAM as follows.
(a) Attention Score for Region Correlation. The degree of spatial correlation varies across different city

regions. In particular, the geographical distance across different city regions is the key factor affecting the
co-occurrences of the anomaly events. Therefore, in this component we further quantify the correlations between
each two regions by evaluating the corresponding correlation attention scores. Fig. 7 further details the structure
of MHSAM.
Specifically, let X𝑖𝑛 ∈ R𝑙×𝐹in×𝐻×𝑊 be the input of TDSAM module in the time steps {𝑡 − 𝑙, . . . , 𝑡 − 1}. Given 𝐹in

channels of image-like inputs of the shape (𝐻,𝑊 ) in the time step 𝑝 ∈ {𝑡 − 𝑙, . . . , 𝑡 − 1}, we first feed the inputs
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into a 2D convolution, and then flatten the inputs into a matrix Xin, p with the shape of (𝐻𝑊 , 𝐹in). In this study,
the image-like inputs in the time step 𝑝 are the crowd flow and anomaly event heatmaps. Then MHSAM linearly
projects Xin,𝑝 into different query, key, and value projections in each attention head by

Qn
p = Xin,pW

n
q, Kn

p = Xin,pW
n
k, Vn

p = Xin,pW
n
v, (1)

where Qn
p , Kn

p and Vn
p are the query, key, and value projections of Xin, p in the time step 𝑝 of the attention

head 𝑛 ∈ 𝑁 . Wn
q ∈ R𝐹in×𝐷k , Wn

k ∈ R𝐹in×𝐷k and Wn
𝑣 ∈ R𝐹in×𝐷𝑣 are the corresponding distinct learnable linear

transformations matrices in the attention head 𝑛. We use the scalars 𝐷𝑣 ∈ R and 𝐷k ∈ R of the same value in all
the attention heads.

Based on above, the global correlation attention scores of all the regions in time step 𝑝 of the attention head 𝑛,
denoted as A𝑛p ∈ R𝐻𝑊 ×𝐻𝑊 , are then given by

A𝑛p =
(Xin, pW

𝑛
𝑞 ) (Xin, pW

𝑛
𝑘
)⊤

√
𝐷𝑘

. (2)

In particular, the attention score A𝑛
𝑝,(𝑖, 𝑗) between the region 𝑖 ∈ {1, 2, ..., 𝐻𝑊 } and the region 𝑗 ∈ {1, 2, ..., 𝐻𝑊 } of

Xin,𝑝 in time step 𝑝 of the attention head 𝑛 can be formulated by Eq. (3) and scaled by 1√
𝐷𝑘

as

A𝑛
𝑝,(𝑖, 𝑗) =

Q𝑛𝑝,𝑖
(
K𝑛𝑝,𝑗

)⊤
√
𝐷𝑘

,
(3)

where Q𝑛𝑝,𝑖 ∈ R1×𝐷𝑘 is the query vector of the region 𝑖 , and K𝑛𝑝,𝑗 ∈ R1×𝐷𝑘 is the key vector of the region 𝑗 in the
time step 𝑝 of the attention head 𝑛.
The above attention score between each pair of regions is equivalent to reordering [5]. In other words, the

correlation between regions which is represented by the attention score becomes independent from the location
of anomaly events. This, however, can be problematic in our case, since the 2D position information (2D geological
distance) between regions should be an important dimension in quantifying the spatial correlations across different
city regions. In this study, we consider the 2D position information between pairs of regions by integrating their
relative height and width information as proposed in [2], formulating the two-dimensional self-attention in each
attention head. Specifically, given the height indices and width indices of the region 𝑖 , (𝐻𝑖 ,𝑊𝑖 ), and another
region 𝑗 , (𝐻 𝑗 ,𝑊𝑗 ), in the 2D data map, the relative height E𝐻𝑖,𝑗 ∈ R1×𝐷𝑘 and relative width E𝑊𝑖,𝑗 ∈ R1×𝐷𝑘 positions
between these two regions are encoded and embedded as

E𝐻𝑖,𝑗 = Embedding(𝐻𝑖 − 𝐻 𝑗 ), E𝑊𝑖,𝑗 = Embedding(𝑊𝑖 −𝑊𝑗 ) . (4)

With the relative position between two regions embedded, the attention score between the regions 𝑖 and 𝑗 ,
denoted as A𝑛

𝑝,(𝑖, 𝑗) ∈ R
+, is modified from Eq. (3) into

A𝑛
𝑝,(𝑖, 𝑗) =

Q𝑛𝑝,𝑖
(
K𝑛𝑝,𝑗

)⊤
+ Q𝑛𝑝,𝑖

(
E𝐻𝑖,𝑗

)⊤
+ Q𝑛𝑝,𝑖

(
E𝑊𝑖,𝑗

)⊤
√
𝐷𝑘

.
(5)

(b) Attention Head Output. With the weighted correlations across regions, we can extract the spatial feature
map of crowd flows and anomaly events in each attention head. Having the attention score matrix A𝑛𝑝 , query
projection Q𝑛𝑝 , key projection K𝑛𝑝 and value projection V𝑛𝑝 in the time step 𝑝 of the attention head 𝑛, we apply a
self-attention layer [27] to map the input Xin,p with the shape of (𝐻𝑊 , 𝐹in) to the feature map with the shape of
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(𝐻𝑊 ,𝐷𝑣) by

O𝑛𝑝 = Softmax
©­­«
Q𝑛𝑝

(
𝐾𝑛𝑝

)⊤
+ Q𝑛𝑝

(
E𝐻

)⊤ + Q𝑛𝑝
(
E𝑊

)⊤
√
𝐷𝑘

ª®®¬
(
V𝑛𝑝

)
, (6)

where E𝐻 ∈ R𝐻𝑊 ×𝐻𝑊 ×𝐷𝑘 and E𝑊 ∈ R𝐻𝑊 ×𝐻𝑊 ×𝐷𝑘 are the relative height and relative width positions between
each two regions of Xin, p.
As mentioned above, MHSAM captures different feature maps of crowd flows and anomaly events in each

attention head by diverse projections. To further utilize these feature maps with different focus, we concatenate
the output feature maps from the 𝑁 attention heads. In particular, the outputs of 𝑁 attention heads in the time
step 𝑝 are concatenated and transformed into dimension 𝐹out to finally outputXhout, p of MHSAM. The concatenation
and projection operations are formulated as

Xhout, p = Concat
[
O1
𝑝 ,O

2
𝑝 , ...,O

𝑁
𝑝

]
W𝑜 + bout, (7)

whereW𝑜 ∈ R𝐹out×𝐹out is the learnable linear transformation, and bout ∈ R𝐹out is a bias term.
(c) Convolution Operation. To further take advantage of local feature processing via convolution operation,

we feed the same inputsXin, p of MHSAMwith shape of (𝐹in, 𝐻,𝑊 ) in the time step 𝑝 into the traditional Convolution
Operation (Conv2D). The extracted local feature map in the time step 𝑝 is then denoted as Xcout, p.
(d) Attenion Feature Fusion. Given the global spatial feature maps from MHSAM and local spatial feature maps

from Convolution Operation, we further leverage both feature maps to extract the spatial features of anomaly
events in each time step. We then concatenate the output Xcout, p ∈ R𝐻×𝑊 with Xhout, p, i.e.,

Xsout, p = Concat
[
Xcout, p,Xhout, p

]
. (8)

In this study, 𝐹in and 𝐹out are both set as 2. Xsout, p includes the feature maps of crowd flows and anomaly events.
Given above, we denote the spatial feature map of crowd flows in Xsout, p in the time step 𝑝 as Xcf,p ∈ R𝐻×𝑊 .
Then we apply MaxPooling operation to modify the crowd flow heatmap in the time step 𝑝 into the shape of
(𝐻 ′,𝑊 ′) by

Xcf,p = MaxPooling(Xcf,p). (9)
We further apply a 2D convolution upon Xsout, p to generate the spatial feature map of anomaly events in the

time step 𝑝 , i.e.,
Xsout, p = Conv2D(Xsout, p). (10)

The spatial features of anomaly events account for both the distribution of crowd flows and anomaly events. The
shape of Xsout, p now is (𝐻 ′,𝑊 ′). The 𝑙 time steps’ crowd flow outputs and anomaly event outputs of TDSAM are
denoted as Xcf and Xsout, respectively.

3.3 CFSAM – Crowd Flow Spatial Attention Mechanism
The dynamic crowd flows can reflect the occurrences of crowd-related anomaly events. However, not all regions
of crowd flows are related to the occurrences of anomaly events of a specific region. Due to the sparseness of the
anomaly events and crowd flows, there are also some regions without any crowd flows and anomaly events for
some time steps. Inspired by [24], we propose an attention mechanism to select the relevant regions of crowd
flows for each region of anomaly events in each time step. Specifically, given the crowd flow feature maps Xcf
during time steps {𝑡 − 𝑙, . . . , 𝑡 − 1} from TDSAM, we capture the importance of crowd flows from different regions
in each time step in Crowd Flow Spatial Attention Mechanism (CFSAM). The details of CFSAM are illustrated in
Fig. 8.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 104. Publication date: September 2021.



104:12 • Huang et al.

H’
𝑙𝑙

H’*W’

𝑙𝑙
1

1

Flatten

W’

CFSAM Input

LSTM

𝑐𝑐𝑜𝑜

LSTM

𝑘𝑘𝑡𝑡−𝑙𝑙

Regional
Attention Layer

Attention Scores

LSTM

CFSAM

CFSAM Output
𝑘𝑘𝑜𝑜𝑐𝑐𝑡𝑡−𝑙𝑙 𝑐𝑐𝑡𝑡−2

𝑘𝑘𝑡𝑡−2
𝑋𝑋𝑐𝑐𝑐𝑐,𝑡𝑡−𝑙𝑙 𝑋𝑋𝑐𝑐𝑐𝑐,𝑡𝑡−1

[𝑘𝑘𝑡𝑡−𝑙𝑙, …, 𝑘𝑘𝑡𝑡−1]
[𝑐𝑐𝑡𝑡−𝑙𝑙, …, 𝑐𝑐𝑡𝑡−1] [𝑘𝑘′𝑡𝑡−𝑙𝑙, …, 𝑘𝑘′𝑡𝑡−1]

𝑋𝑋𝑐𝑐𝑐𝑐
𝑋𝑋𝑐𝑐𝑐𝑐 Updating 

Hidden States

Cell States

Hidden States

H’*W’ H’*W’
CFSAM-(a) CFSAM-(b) CFSAM-(c)

𝑿𝑿𝒄𝒄𝒄𝒄

Fig. 8. Illustration of Crowd Flow Spatial Attention Mechanism (CFSAM). c𝑜 & k𝑜 are the initial cell state and hidden state.

(a) LSTM for Crowd Flow Heatmap. With the integration of the memory cell, input gate, output gate and
forget gate, LSTM is capable of capturing the long-term dependencies of time series by summing the features of
anomaly activities over time, and overcoming vanishing gradient problem. Inspired by above, we use LSTM in the
attention mechanism to process the crowd flows from different regions and different time steps. First, we flatten
the crowd flow feature maps Xcf into shape of (𝑙, 𝐻 ′𝑊 ′). CFSAM then maps the flattened crowd flow feature map
in the time step 𝑝 , Xcf, p, 𝑝 ∈ {𝑡 − 𝑙, . . . , 𝑡 − 1}, into k𝑝 ∈ R𝑚 , i.e.,

k𝑝 = LSTM(k𝑝−1,Xcf, p), (11)

which is the hidden state of Long Short-Term Memory (LSTM) in the time step 𝑝 . Specifically, the LSTM cell in the
time step 𝑝 is formally given by

fp = 𝜎
(
W𝑓 [k𝑝−1,Xcf, p] + b𝑓

)
, (12)

up = 𝜎

(
W𝑢 [k𝑝−1,Xcf, p] + b𝑢

)
, (13)

v𝑝 = 𝜎

(
W𝑣 [k𝑝−1,Xcf, p] + b𝑣

)
, (14)

c𝑝 = f𝑝 ⊙ c𝑝−1 + u𝑝 ⊙ tanh
(
w𝑐 [k𝑝−1,Xcf, p] + b𝑐

)
, (15)

k𝑝 = v𝑝 ⊙ tanh(c𝑝 ), (16)
where cp is the cell state of 𝐿𝑆𝑇𝑀 cell in the time step 𝑝 , W𝑓 ∈ R𝑚×(𝑚+1) , W𝑢 ∈ R𝑚×(𝑚+1) , Wv ∈ Rm×(m+1) ,
W𝑐 ∈ R𝑚×(𝑚+1) , b𝑓 ∈ R𝑚 , b𝑢 ∈ R𝑚 , b𝑣 ∈ R𝑚 , and b𝑐 ∈ R𝑚 are parameters to learn. [𝑘𝑝−1,Xcf, p] ∈ R

𝑚+1 is the
concatenation of the hidden state in the time step (𝑝 − 1) and the input of the crowd flow in current time step.
𝜎 (·) and ⊙ are the Sigmoid function and element-wise multiplication operation, respectively.

(b) Attention for Region Crowd Flow Importance. Given 𝐻 ′𝑊 ′ regions of crowd flows of 𝑙 historical time
steps, we design a regional attention layer to measure the importance of crowd flows from different regions in
each time step. The attention weight of crowd flow from the region 𝑖 in the time step 𝑝 is calculated by

𝑒𝑖𝑝 = w⊤
𝑒 tanh(W𝑒 [k𝑝−1, c𝑝−1] + U𝑒X𝑖cf), 𝑎𝑖𝑝 =

exp(𝑒𝑖𝑝 )∑𝐻 ′𝑊 ′
𝑖′=1 exp(𝑒𝑖′𝑝 )

, (17)

where 𝑎𝑖𝑝 is the attention weight of crowd flow X𝑖cf of the region 𝑖 ∈ {1, 2, ..., 𝐻 ′𝑊 ′} in the time step 𝑝 . w⊤
𝑒 ∈ R,

W𝑒 ∈ R1×2𝑚 , and U𝑒 ∈ R are the parameters to learn. Note that the attention weights of all crowd flows in one
time step sum to 1.
(c) Crowd Flow AttentionWeight & Hidden State Updates. After measuring the importance of crowd flows

using the attention weights, the crowd flows of all regions in the time step 𝑝 are then updated by

X̃cf,𝑝 =

{
𝑎1𝑝X

1
cf,𝑝 , 𝑎2𝑝X

2
cf,𝑝 , ..., 𝑎𝐻

′𝑊 ′
𝑝 X𝐻

′𝑊 ′

cf,𝑝

}
. (18)
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The value of the crowd flow entries after re-weighting is denoted as

X̃cf =
{
X̃cf,𝑡−𝑙 , X̃cf,𝑡−𝑙+1, ..., X̃cf,𝑡−1

}
. (19)

Given the weighted crowd flows from 𝐻 ′𝑊 ′ regions of 𝑙 time steps, M-STAP can particularly learn upon the
most important regions of crowd flows in each time step by updating the hidden states 𝑘 ∈ R𝑙×𝑚 with the updated
crowd flows. The hidden state in the time step 𝑝 is updated as

k′
𝑝 = LSTM

(
k𝑝−1, X̃cf,p

)
. (20)

The hidden states during time steps {𝑡 − 𝑙, . . . , 𝑡 − 1} are denoted as k′
= {k′

𝑡−𝑙 , k
′
𝑡−𝑙+1, ..., k

′
𝑡−1}.

3.4 TAM – Temporal Attention Mechanism
Given 𝑙 time steps of anomaly event feature maps Xsout from TDSAM and 𝑙 time steps of hidden states k′ from
CFSAM, we propose Temporal Attention Mechanism (TAM) to differentiate the contributions of anomaly events in
𝑙 historical time steps on the prediction.

(a) Attention for Temporal Hidden States. Given 𝑙 time steps of hidden states k′ which measure the impor-
tance of crowd flows from different regions in each time step, we can further weigh the influences of crowd
flows from 𝑙 time steps on the anomaly events in each time step. In particular, as shown in Fig. 9, the attention
weight 𝑎𝑞𝑝 of the hidden state k′

𝑞 in TAM on the anomaly events in the time step 𝑝 can be calculated by the regional
attention layer, i.e.,

𝑑
𝑞
𝑝 = w⊤

𝑑
tanh(W𝑑 [h𝑝−1, c′𝑝−1] + U𝑑k′

𝑞 + b𝑑 ), 𝑎
𝑞
𝑝 =

exp(𝑑𝑞𝑝 )∑𝑡−𝑙
𝑞′=𝑡−1 exp(𝑑

𝑞′
𝑝 )
, (21)

where 𝑞 ∈ {𝑡 − 𝑙, . . . , 𝑡 − 1} and 𝑝 ∈ {𝑡 − 𝑙, . . . , 𝑡 − 1}. [h𝑝−1, c′𝑝−1] ∈ R2𝑚 is the concatenation between the hidden
state h𝑝−1 and cell state c′𝑝−1 calculated by LSTM using the heatmaps of anomaly events Xsout,𝑝−1 in the time step
𝑝 − 1. w⊤

𝑑
∈ R,W𝑑 ∈ R1×2𝑚 , U𝑑 ∈ R1×𝑚 , and b𝑑 ∈ R are parameters to learn.

Then we can compute the weighted sum of the influences of all hidden states k′ on the anomaly events in the
time step 𝑝 . The weighted sum is represented by context vector g𝑝 ∈ R𝑚 at the time step 𝑝 , which is calculated as

g𝑝 =

𝑡−𝑙∑
𝑞=𝑡−1

𝑎
𝑞
𝑝k

′
𝑞 . (22)

The context vectors during time steps {𝑡 − 𝑙, . . . , 𝑡 − 1} are given by g = {𝑔
𝑡−𝑙 , 𝑔𝑡−𝑙+1, . . . , 𝑔𝑡−1}.

(b) Anomaly Event Heatmap & Hidden State Update. Accounting for both the influences from the crowd
flows and previous anomaly events, we update the anomaly event heatmapsXsout during time steps {𝑡−𝑙, . . . , 𝑡−1}
by the linear operation, i.e.,

X̃ℎ,𝑤sout,𝑝 = w̃⊤
[
Xℎ,𝑤sout,𝑝 , g𝑝

]
+ b̃, (23)

where X̃ℎ,𝑤sout,𝑝 is the updated anomaly event in grid (ℎ,𝑤) in the time step 𝑝 , ℎ ∈ {1, . . . , 𝐻 ′} and𝑤 ∈ {1, . . . ,𝑊 ′}.
[Xℎ,𝑤sout,𝑝 , g𝑝 ] is the concatenation between Xℎ,𝑤sout,𝑝 and the context vector g𝑝 in the time step 𝑝 . w̃⊤ ∈ R1×(𝑚+1) and
b̃ ∈ R are parameters to learn.
Having the updated anomaly events of each region in each time step, we can calculate the corresponding

hidden state ℎ𝑝 and cell state 𝑐 ′𝑝 of LSTM in the time step 𝑝 by

ℎ𝑝 , 𝑐
′
𝑝 = LSTM

(
ℎ𝑝−1, 𝑐

′
𝑝−1, X̃sout,𝑝

)
. (24)
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Fig. 9. Illustration of Temporal Attention Mechanism (TAM).

(c) Final Anomaly Event Distribution Output. In this step, we have the context vector g𝑡−1 at the time step
𝑡 − 1 which aggregates the influences of both the previous 𝑙 time steps of crowd flows and anomaly events. Then
we calculate the anomaly event prediction of region (ℎ,𝑤) in the time step 𝑡 with g𝑡−1 and the hidden state h𝑡−1
at the time step 𝑡 − 1 by the Dense and ReLU activation operations, i.e.,

Xℎ,𝑤out,𝑡 = w̃⊤
𝑏 ReLU

(
W̃𝑏 [h𝑡−1, g̃𝑡−1] + 𝑏𝑏

)
, (25)

where w̃⊤
𝑏 ∈ R, W̃𝑏 ∈ R1×2𝑚 and 𝑏𝑏 ∈ R are parameters to learn. Having all the predictions in the time step 𝑡 , we

reshape the predictions into shape of 𝐻 ′ ×𝑊 ′. The final predictions of all regions in the time step 𝑡 are denoted
as Xout ∈ R𝐻

′×𝑊 ′ .

4 EXPERIMENTAL STUDIES
We first present the experimental settings in Sec. 4.1, and then we show the evaluation results in Sec. 4.2.

4.1 Experimental Settings
We compare our M-STAP with the following baselines.

(1) Historical Average (HA): The anomaly events of each grid in the time step 𝑡 are predicted as the average of
the data in the same time step of the days during time steps {𝑡 − 𝑙, . . . , 𝑡 − 1}.

(2) Gaussian Process (GP): In the Gaussian Process (GP) time series model [11], a total of 𝑙 historical time steps
of anomaly event data during time steps {1, . . . , 𝑡 − 1} are used to predict the anomaly events of each region
in the time step 𝑡 .

(3) Recurrent Neural Networks (RNN): We implement RNN in this study to predict the time series of the anomaly
events in the time step 𝑡 , and the number of historical time steps 𝑙 is set as 4.

(4) Long Short-Term Memory (LSTM): LSTM takes in the 𝑙 historical time steps of anomaly event heatmaps and
predicts the anomaly events in the time step 𝑡 .

(5) Gated Recurrent Unit (GRU): We feed the 𝑙 historical time steps of anomaly event data into GRU to predict
the anomaly events in the incoming time step 𝑡 .

(6) Convolutional LSTM Network (ConvLSTM): Given crowd flows and anomaly events heatmaps 𝑋𝑖𝑛 in time
steps {𝑡 − 𝑙, . . . , 𝑡 − 1}, ConvLSTM predicts the anomaly event heatmaps in the time step 𝑡 .
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(7) TPA-LSTM [26]: which leverages attention-recurrent neural network to predict the anomaly events heatmap
with the shape of 𝐻 ′ ×𝑊 ′ by using 𝑙 historical time steps of anomaly event heatmaps with the same shape
as the predicted heatmap.

(8) CHAT [15]: We adapt the Cross-Interaction Hierarchical Attention (CHAT) network to predict the frequency
of multi-region anomaly event. We use 𝑙 historical time steps of anomaly events with the shape of 𝐻 ′ ×𝑊 ′

to predict the next time step of anomaly event heatmap with the shape of 𝐻 ′ ×𝑊 ′.
(9) MTGNN [32]: In Multivariate Time-series forecasting with Graph Neural Networks (MTGNN), we use the 𝑙

historical time steps of anomaly event and crowd flow data with the shape of𝐻 ×𝑊 to predict one following
time step of anomaly event heatmap with the shape of 𝐻 ′ ×𝑊 ′.

(10) STResNet [37]: We consider that historical anomaly event and crowd flow heatmaps with the shape of
𝐻 ×𝑊 are applied to predict one following time step of the anomaly event heatmap with the shape of
𝐻 ′ ×𝑊 ′. The lengths of closeness, period, trend sequences in STResNet are all set as 4.

Unless otherwise stated, we use the following parameter settings by default. For the data of NYC, 𝐻 ×𝑊 , 𝐻 ′×𝑊 ′,
𝑙 ,𝑚, 𝑁 , 𝐷𝑘 , 𝐷𝑣 , learning rate, batch size, and training epochs are set as 24 × 24, 16 × 16, 4, 16, 2, 2, 1, 0.0002, 128
and 4,000, respectively. For the data of Chicago, 𝐻 ×𝑊 , 𝐻 ′ ×𝑊 ′, 𝑙 ,𝑚, 𝑁 , 𝐷𝑘 , 𝐷𝑣 , learning rate, batch size, and
training epochs are set as 16 × 9, 16 × 9, 4, 5, 2, 2, 1, 0.0002, 128 and 1,000. For the data of Melbourne, 𝐻 ×𝑊 ,
𝐻 ′ ×𝑊 ′, 𝑙 ,𝑚, 𝑁 , 𝐷𝑘 , 𝐷𝑣 , learning rate, batch size, and training epochs are set as 26 × 26, 26 × 26, 4 16, 2, 2, 1,
0.0002, 256 and 2,000. For datasets of 311 noise complaint, 311 service request, and crime complaint in NYC, as
well as both Chicago and Melbourne, we leave out the last 40 days for validation and testing, i.e., the first 20 days
are for validation and the next 20 days for testing, and rest are used for training. For motor vehicle collision in
NYC, we use the last 20 days for validation and testing, i.e., the first 10 days are for validation and the next 10
days for testing, and the rest are used for training. Due to sparsity of the dataset, the length of one time step is
12h for NYC and Chicago. For Melbourne we adopt 1h for each time step. All the experiments are trained based
on the loss of the Mean Squared Error (MSE), i.e.,

MSE =
1

𝐻 ′ ×𝑊 ′ ×
𝐻 ′∑
ℎ=1

𝑊 ′∑
𝑤=1

(
X̂
ℎ,𝑤

out − Xℎ,𝑤out
)2
. (26)

Our evaluation matrices include the Mean Absolute Error (MAE), the Error Rate (ER), the Root Mean Squared
Error (RMSE) and the Mean Squared Logarithmic Error (MSLE) as follows,

MAE =
1

𝐻 ′ ×𝑊 ′ ×
𝐻 ′∑
ℎ=1

𝑊 ′∑
𝑤=1

���𝑋ℎ,𝑤out − Xℎ,𝑤out
��� , ER =

∑𝐻 ′

ℎ=1
∑𝑊 ′
𝑤=1

���𝑋ℎ,𝑤out − Xℎ,𝑤out
���∑𝐻 ′

ℎ=1
∑𝑊 ′
𝑤=1 X

ℎ,𝑤
out

,

RMSE =

√√√
1

𝐻 ′ ×𝑊 ′ ×
𝐻 ′∑
ℎ=1

𝑊 ′∑
𝑤=1

(
X̂
ℎ,𝑤

out − Xℎ,𝑤out
)2
, MSLE =

1
𝐻 ′ ×𝑊 ′ ×

𝐻 ′∑
ℎ=1

𝑊 ′∑
𝑤=1

���log2 (𝑋ℎ,𝑤out + 1
)
− log2

(
Xℎ,𝑤out + 1

)��� ,
(27)

where𝑋ℎ,𝑤out is the predicted anomaly event in region (ℎ,𝑤) of the time step 𝑡 , ℎ ∈ {1, . . . , 𝐻 ′} and𝑤 ∈ {1, . . . ,𝑊 ′},
andXℎ,𝑤out is the corresponding ground truth. The results of all experiments are the average values of two consecutive
experiments with the same parameters and environment.

We conduct experimental studies on the Google Colab8 and a desktop of Intel i7-9700, NVIDIA GeForce RTX
2060 SUPER, 16.0 GB RAM, and Windows 10. The proposed model is implemented in Python with Tensorflow-
GPU-2.3.0.

8https://colab.research.google.com/notebooks/intro.ipynb#recent=true

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 104. Publication date: September 2021.



104:16 • Huang et al.

Table 4. Performance comparison on urban anomaly datasets from NYC, Melbourne, and Chicago.

Scheme 311 Noise Complaint (NYC) 311 Service Request (NYC) Crime Complaint (NYC)
MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE

HA 0.870 2.919 0.678 0.407 0.750 2.751 0.669 0.334 1.301 3.660 0.456 0.310
GP 1.151 3.565 0.967 0.986 1.069 3.475 0.946 0.892 2.554 6.986 0.904 1.974
RNN 1.183 3.735 0.922 0.922 1.049 3.384 0.935 0.810 2.556 6.813 0.896 1.956
LSTM 1.140 3.623 0.889 0.821 0.968 3.160 0.863 0.702 2.468 6.681 0.866 1.633
GRU 1.175 3.650 0.917 0.852 1.041 3.297 0.928 0.790 2.496 6.730 0.875 1.760
ConvLSTM 1.184 3.780 0.924 0.734 1.030 3.441 0.919 0.633 2.657 7.044 0.932 1.555
TPA-LSTM 0.898 2.645 0.704 0.482 1.079 3.626 0.962 0.693 1.301 3.232 0.470 0.459
CHAT 0.957 2.926 0.746 0.376 0.864 2.825 0.771 0.320 1.361 3.577 0.477 0.664
MTGNN 0.955 2.828 0.775 0.222 0.832 2.586 0.739 0.203 1.375 4.007 0.481 0.230
STResNet 0.912 2.540 0.711 0.432 0.841 2.485 0.750 0.557 1.397 2.966 0.490 0.608
M-STAP 0.818 2.263 0.638 0.383 0.775 2.332 0.691 0.376 1.041 2.494 0.365 0.271

Scheme Motor Vehicle Collision (NYC) Parking Event (Melbourne) Crime Event (Chicago)
MAE RMSE ER MSLE MAE RMSE ER MSLE MAE RMSE ER MSLE

HA 0.859 2.243 0.961 0.946 1.711 12.879 0.481 0.121 1.251 2.259 0.550 0.460
GP 0.837 2.322 0.926 0.804 3.860 29.841 0.989 1.380 1.689 3.263 0.733 1.131
RNN 0.855 2.094 0.956 0.660 1.732 13.479 0.487 0.362 1.252 2.226 0.551 0.740
LSTM 0.633 1.597 0.708 0.421 1.941 15.333 0.546 0.294 1.518 2.853 0.668 1.025
GRU 0.766 1.901 0.857 0.574 1.889 15.178 0.531 0.267 1.337 2.436 0.588 0.778
ConvLSTM 0.844 2.088 0.944 0.562 2.615 12.138 0.739 1.381 1.171 2.005 0.515 0.434
TPA-LSTM 0.545 1.316 0.627 0.375 1.400 11.580 0.395 0.212 1.345 2.377 0.590 0.522
CHAT 0.648 1.611 0.745 0.376 2.007 15.324 0.567 0.228 1.173 2.132 0.525 0.453
MTGNN 0.588 1.492 0.678 0.201 1.832 11.725 0.517 0.159 1.062 1.992 0.470 0.262
STResNet 0.613 1.502 0.705 0.371 1.235 9.159 0.347 0.063 1.525 2.987 0.671 1.307
M-STAP 0.549 1.314 0.615 0.280 0.579 5.775 0.248 0.041 0.932 1.701 0.410 0.294

4.2 Evaluation Results
• Overall Results: Tab. 4 demonstrates the experiment results of predicting anomaly events of NYC, Melbourne
and Chicago using our proposed method M-STAP and other baselines. Compared with other baselines, M-STAP
demonstrates the following average improvements in all metrics considered per dataset: (i) on average 28.07%
when predicting 311 noise complaints, 21.56% for 311 service requests, 55.17% for crime complaints, 30.63% for
motor vehicle collision events in NYC; (ii) on average 69.64% error reduction for parking events in Melbourne;
and (iii) on average 46.46% error reduction for crime events in Chicago.

Compared with M-STAP, RNN, LSTM, and GRU only capture the temporal correlations and are not able to capture
the spatial correlations. ConvLSTM is a combination of convolutional neural network (CNN) and LSTM, and it fails
to characterize the different contributions of different context features and time steps. HA outperforms baselines
like GP and RNN/LSTM/GRU in predicting most of datasets. It is mainly because of the sparsity within the anomaly
datasets where the anomaly events mostly happen at limited locations and time periods. For instance, the heavy
parking events in Melbourne happen at less than 16% of the time steps at all city regions. Therefore, taking
the average of historical data does not generate predictions far from ground-truths for the HA approach, while
the conventional deep learning approaches may be prone to the dynamic and sparse anomaly events. GP may
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Fig. 10. Performance of crime event prediction for NYC using different ablation settings.

suffer from the complex dynamics and spatio-temporal variations within the anomalies and hence cannot achieve
satisfactory results. Different from M-STAP, TPA-LSTM and CHAT do not consider the spatial correlations between
time series of different regions. MTGNN and STResNet merely analyze the spatial correlations among neighboring
local regions. Therefore, these approaches may not achieve high accuracy.
M-STAP provides higher accuracy thanks to its more comprehensive model integration with the spatio-temporal

characteristics of the crowd flows (check-ins and other mobility data) and anomaly events. The results show that
our proposed method has overall higher prediction accuracy compared with other baselines, demonstrating the
effectiveness of M-STAP in multi-region anomaly events prediction problem.
• Ablation Studies:We compare the base design of (i) M-STAP, and different ablation settings, i.e., (ii) M-STAP
without CFSAM+TAM, (iii) M-STAPwithout TDSAM, (iv) M-STAPwithout Convolution Operation in TDSAM, (v) M-STAP
without MHSAM in TDSAM, and (vi) M-STAP where the LSTM is replaced by GRU. Specifically, we use the crime
complaint data of NYC as example to investigate the performance of each component of the proposed model. All
the parameters are the same as the ones of predicting crime complaint data of NYC by M-STAP as mentioned
above. As shown in Fig. 10, M-STAP achieves the highest accuracy, and on average improves 10.44% in MAE, 12.15%
in RMSE, 10.50% in ER, and 35.89% in MSLE, when compared with the remaining five settings. The improvements
from CFSAM+TAM and TDSAM are more significant by comparing the prediction result of (i) M-STAP against (ii)
M-STAP without CFSAM+TAM, and (iii) M-STAP without TDSAM. The prediction results show that TDSAM is important
for measuring the spatial correlations of each region of the anomaly events, while CFSAM+TAM demonstrates
effectiveness in evaluating the correlation between occurrence of anomaly events and the movement of crowd
flows, and capturing the most important historical time steps for prediction. In addition, leveraging both TDSAM
and Convolution Operation benefits the integration of the spatial correlations of anomaly events. The occurrences
of anomaly events in a specific region are correlated with the ones from different time periods. By applying
LSTM in CFSAM+TAM, M-STAP is capable of capturing both the short-term and long-term dependencies of anomaly
events than using GRU.
• Sensitivity Studies: To evaluate the number of time steps of the inputs, denoted as 𝑙 , we predict the noise
complaints with our proposed model with 𝑙 set as 1 to 7. As shown in Fig. 11, our proposed model performs the
best with 𝑙 set as 4, indicating that utilizing the historical two days’ crowd flows and 311 noise complaint data
to predict the anomaly event in the next 12 hours gains the highest accuracy. In this study, we can see that the
predictions of 311 noise complaints, 311 service requests, crime complaints, and motor vehicle collision events
achieve the highest accuracy when 𝑙 is set as 4.
• Visualization: Taking NYC as an example, Fig. 12 further illustrates the ground-truth and predicted heatmaps
of 311 noise complaints, 311 service requests, crime complaints, and motor vehicle collisions in NYC during one
selected time step in the testing data. In the ground-truth and predicted heatmaps of the same anomaly event,
the warmer colors in a region indicate the larger number of anomaly events. The dynamic spatial and temporal
dependencies of anomaly events make it hard to predict the frequencies of anomaly event of each interacted
regions. M-STAP considers both factors and achieves high prediction result of the multi-region anomaly event
prediction. We can observe from the heatmaps that the spatial distributions and the frequencies of each anomaly
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Fig. 11. Prediction results of crime complaint anomaly events of NYC using different length of 𝑙 .

(a) 311 noise complaints. (b) 311 service requests.

(c) Crime complaints. (d) Motor vehicle collisions.

Fig. 12. The heatmaps of the ground truths and prediction results of: (a) 311 noise complaints; (b) 311 service requests; (c)
crime complaints; and (d) motor vehicle collisions of NYC of one selected time step in the testing data.

event are predicted accurately by M-STAP. The accurate multi-region anomaly event prediction results can benefit
the applications such as urban emergency prediction, and subsequent crowd flow redistribution and management.

5 RELATED WORK
We briefly discuss the related work as follows. In particular, we first review the urban check-in and traffic data
analysis, and then review the urban anomaly data analytics in two categories: detection and prediction.
• Urban Check-in & Traffic Data: Location-based social network platforms such as Foursquare [18], Twitter and
DenseGPS [10] provide plenty of check-in data which can characterize the time and locations visited by users,
enabling various kinds of urban applications and services [22, 23]. By understanding the correlations between
trajectories, locations and users, Zheng et al. pioneered a location-based social network framework for friend
and POI recommendation [1, 40]. Cao et al. [3] and Jiang et al. [16] respectively presented large-scale analysis
of point-of-interest (POI) revisitation patterns and regions-of-interest (ROI) to model the periodic behavior of
human mobility. Chen et al. recently identified the similarities and differences of visitations and check-ins [4],
which is essential for enhancing human mobility modeling. Besides above, various mobility modeling and system
designs have been investigated, including decentralized and personalized designs [8], probabilistic activity [20],
and Bayesian mixture modeling [28]. Social and business values have been further derived by analyzing the
urban human mobility data. Yang et al. studied the commercial activeness prediction based on urban big data
including user check-ins [33]. Using check-in data as auxiliary information, Fan et al. proposed an approach for
personalized context-aware collaborative online activity prediction [7]. Ruan et al. studied the dynamic public
resource allocation on the real-world crowd flow data in a theme park in Beijing [25].
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On the other hand, understanding the traffic patterns has become increasingly important for urbanmanagement
and response. Many research efforts have focused on demand prediction of taxi [34] and bike-sharing [21] and
estimation of travel time [29]. Wu et al. proposed the graph neural network for multivariate time series forecasting
which was validated in traffic condition prediction [32].

Different from the above studies, we focus on leveraging the ubiquitously harvested urban mobility data
for accurate anomaly prediction. In particular, we have studied the generality and adaptivity of M-STAP under
different crowd flows and mobility datasets, including Foursquare check-in, bike-sharing usage, and pedestrian
counting data, and leverage each as the input crowd flows serving as an important auxiliary information within
our novel attention-based deep learning approach. Such a novel fusion and integration enables accurate and
robust urban anomaly prediction and has been experimentally validated in multiple different anomaly datasets.
• Anomaly Detection: Detecting the urban anomaly events is an essential task for many city governors and
planning agencies. It has been received wide attentions as it enables or boosts many important applications
such as travel time estimation of multiple transportation systems [9] and exploration of anomalous regions with
long-term poor traffic situations [19]. Various approaches have emerged on the detection of anomaly events.
Witayangkurn et al. proposed a hidden markov model based on GPS data from mobile phones [30]. Different
sources and domains of spatio-temporal data have been further utilized for anomaly detection [36, 41]. Zhang et
al. developed a decomposition approach to detect urban anomaly [38]. Different from these works, we focus on
forecasting the distributions of urban anomaly events based on historical urban data fusion and novel multi-head
spatio-temporal attention designs, which will enable more proactive urban applications and predictive modeling
of city patterns.
• Anomaly Prediction: Anomaly prediction aims at forecasting the timestamps/periods and locations of the
incoming anomaly events, and can generally be categorized into the following two folds: the event classification
and regression. (a) In classification studies, Wu et al. [31] designed an approach on forecasting which category of
urban anomaly events will happen in each region of the city. Furthermore, Huang et al. proposed crowdsoursing
approach to predict frequencies of anomaly events [14]. (b) In regression problems, Zhao et al. modeled the
spatio-temporal correlations for crime prediction [39]. Taking in the city anomalies as input, Huang et al. proposed
bidirectional LSTM with cross-interaction hierarchical attention for prediction of urban anomaly categories [15],
where they use an interaction attention and a temporal attention to model the correlations between different
regions and time periods. However, it does not take into account the effect of surrounding crowd dynamics on the
occurrence of anomaly event, which is an important aspect for predicting the distributions of anomaly events [17].
Based on multi-head spatial and temporal attention, our M-STAP focuses on a more challenging task on predicting
the multi-region distributions of anomaly events given historical anomalies and crowd flow distributions, and
our experimental studies have validated its better performance than other state-of-the-arts.
Different from above work, we propose utilizing the crowd flow as an auxiliary information for enhanced

anomaly event prediction. While some recent studies have investigated deep learning for crime prediction [39]
and regional traffic accident prediction [35], these works often focus on the short-term impact of historical events
alone, but may not fully consider the long-term contribution and the relative importance of each context feature
to the target series in the same time slot. Our M-STAP falls in this category of studies, but it develops a novel
multi-head attention mechanism to further differentiate the dynamic contributions of different spatial, temporal
as well as contextual features. Our experimental studies have further validated the accuracy and robustness of
M-STAP compared with the baseline algorithms.

6 CONCLUSION
In the study, we propose M-STAP, a Multi-head Spatio-Temporal Attention Prediction approach to address the
multi-region urban anomaly events prediction problem. We have designed within M-STAP three important
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modules, i.e., Two-dimensional Spatial Attention Mechanism (TDSAM), Crowd Flow Spatial Attention Mechanism
(CFSAM) and Temporal Attention Mechanism (TAM). In TDSAM, we utilize the multi-head self-attention mechanism
to capture the global spatial features of anomaly events and crowd flows of each part of the city in parallel. The
extracted citywide feature map is then concatenated with the local spatial feature map extracted by Convolution
Operation. We consider the impacts of crowd flow data from different regions on the anomaly events in each
time step by CFSAM, and weight the influences of history anomaly events in different time steps for the prediction
in TAM. We have evaluated our proposed method with the crowd flows and anomaly events in NYC, Melbourne,
and Chicago. The experimental results show that our proposed method works well in multi-region anomaly
event prediction problem, outperforming other baselines. Our accurate and robust prediction algorithm can be
integrated with other urban computing systems [9, 17] to enhance the preparedness of urban safety management,
traffic coordination, and emergency planning.
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