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ABSTRACT
Taking into account the availability of the historical GPS trajec-
tories of drivers, given a new GPS trajectory, Driver mobility fin-
gerprint (DMF) identification aims at (i) determining whether a
generated trajectory belongs to a potential driver, and (ii) detecting
if a trajectory is likely anomalous based on a driver’s historical
data. Prior studies often consider hand-crafted feature engineering
techniques to extract DMFs while contextual factors like weather
and points-of-interest (POIs) are hardly accounted for, which might
not achieve satisfactory identification results. To address above, we
propose RM-Drive, a novel framework based on reinforced feature
extraction and multi-resolution learning. Specifically, we first em-
ploy spatio-temporal inverse reinforcement learning (ST-IRL) to
extract DMFs from historical trajectories. Then, we generate trajec-
tory embeddings by fusing the extracted DMFs and the contextual
factors using the multi-resolution trajectory embedding network
(MTE-Net). Our proposed MTE-Net consists of multi-resolution con-
volutional neural network (MR-CNN), which enables the model to
learn the multi-resolution features of the DMFs. Finally, we leverage
the trajectory embeddings for the driver classification and anomaly
detection. We have conducted extensive evaluation studies upon
RM-Drive with two real-world datasets, and our results demon-
strate the performance improvements from the state-of-the-art of
driver classification and anomaly detection respectively by 21%
and 11% on average based on several evaluation metrics, including
accuracy, precision, and recall, etc.
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1 INTRODUCTION
The Driver mobility fingerprint (DMF) identification problem refers
to the task of learning a distinctive set of DMFs (e.g., driving time,
and frequencies of trajectories) from drivers’ historical data (i.e.,
GPS trajectories). As illustrated in Fig. 1, DMF can be used as fin-
gerprints to identify the driver that generates the new mobility
measurement (i.e., driver classification), or to decide whether the
measurement belongs to a specific driver (i.e., anomaly detection).
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Figure 1: Potential outcomes based on DMF identification.

Realizing DMF identification can enable various practical appli-
cations, including prevention of unauthorized driving (say, unau-
thorized Uber ride sharing1) and enhancement of driving safety2,
which are particularly important for ride-hailing service providers
(like Uber and Lyft) and the insurance companies (like State Farm
and Progressive Car Insurance). Despite the prior approaches and
recent advances [4, 8, 25], DMF identification remains challenging
due to the following technical barriers:
•Complexmobility features among drivers’ trajectories and
travel activities: Due to complex spatio-temporal settings and
drivers’ decision-making behavior patterns, different drivers may
potentially have very similar active regions. As a consequence,
differentiating such drivers based on just simple features extracted
from their historical GPS trajectories may not necessarily produce
satisfactory identification results. Prior work investigated hand-
crafted driver profile features [25], which, however, may not provide
satisfactory identification accuracy under complex driver decision-
making processes and dynamic environments.
•Lack of spatio-temporal feature fusionwith contextual fac-
tors: Via our data analytics, we have observed that drivers’ decision-
making behavior patterns may take various latent effects from com-
plex contextual factors such as points-of-interest (POIs) andweather
conditions. Moreover, such complex spatio-temporal dependencies
between these factors and the drivers’ behaviors could not be ef-
fectively identified via simple hand-crafted feature-engineering
1https://www.cnet.com/news/uber-drivers-using-fake-identities-isnt-just-a-london-
problem/
2https://help.uber.com/driving-and-delivering/article/can-i-share-my-account-with-
friends—?nodeId=1d93388d-cf19-408f-9c41-743dbdd34d44
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Figure 2: Major differences of our framework with prior work.

techniques, making it highly challenging for the model designs to
capture such complicated correlations.
•Absence ofmulti-resolution drivermobilitymodeling: Tra-
jectory pre-processing often consists of discretization of the city
map into grid-cells, converting a trajectory into a series of matched
grid-cells for ease of computation. However, the information that
is maintained during such spatial discretization depends on the
resolution setting, i.e., the width and height of the chosen grid-
map. A single-resolution may discard the information of the DMFs
that are essential for identification. Multi-resolution pre-processing
and subsequent learning can benefit the DMF identification, which,
nevertheless, remains challenging and largely unexplored.

In order to overcome the aforementioned challenges, we pro-
pose RM-Drive, a novel Reinforced feature extraction and Multi-
resolution learning for Driver mobility fingerprint identification.
Specifically, RM-Drive integrates (i) spatio-temporal inverse rein-
forcement learning (ST-IRL) to extractmulti-resolution spatio-temporal
DMFs (e.g., favorite geographical areas and driving-time prefer-
ences); (ii) amulti-resolution trajectory embedding network (MTE-Net)
augmentedwithmulti-resolution convolutional neural network (MR-CNN)
to simultaneously capture various types of hidden features in mul-
tiple resolutions; (iii) a neural network based on MTE-Net for driver
classification that receives the input DMF tensors of a trajectory
and determines which the driver it belongs to, and (iv) a siamese
network design using two identical MTE-Net modules for anomaly
detection that receives sets of input DMF tensors from two tra-
jectories and determines whether they are generated by a specific
driver.

To summarize, we make the following major contributions in
RM-Drive (Fig. 2):

(a) Inverse Reinforced Spatio-Temporal Driver Mobility
Feature Extraction (Sec. 3):We design a novel spatio-temporal
inverse reinforcement learning module (ST-IRL) that effec-
tively extracts the hidden DMFs (i.e., reward and policy) from
the historical trajectories that represent the decision-making
behavior patterns of the drivers. This way, RM-Drive adapts
to the complex spatial and temporal contexts for DMF iden-
tification without hand-crafted feature engineering.

(b) Multi-ResolutionDeepDriverMobility Fingerprint Learn-
ing (Sec. 4): We have designed a novel fusion technique to
integrate the complex spatio-temporal features and contex-
tual factors (i.e., POIs and weather conditions) with multiple
resolutions. Such multi-resolution learning adaptively cap-
tures the most important characteristics of drivers’ decision-
making behavior patterns to enhance RM-Drive’s overall

accuracy and robustness, and subsequently reduces the ef-
forts in the resolution fine-tuning.

(c) Extensive Real-World Data Analytics and Experimen-
tal Studies (Sec. 5): We have extensively analyzed and stud-
ied two different large-scale datasets collected in Porto, Por-
tugal, and Rome, Italy, with more than 40K trajectories of 200
selected drivers combined to show the applicability of our
method. We design and perform several tests on different
subsets of the mentioned datasets to evaluate our framework
compared to other baselines. Our experimental studies show
that according to several evaluation metrics, including ac-
curacy, top-5 accuracy, precision, and recall, RM-Drive has
achieved respectively 21% and 11% higher scores on average
compared to the state-of-the-art models for driver classifica-
tion and anomaly detection.

Our proposed framework can potentially benefit existing or
emerging urban computing applications/services, including car
rental [26], ride hailing/sharing [1, 14–16], and related insurance
companies to help identifying unauthorized drivers and mitigate
potential violation of their management/insurance policies (e.g.,
uninsured driving, shared driver accounts, and unnecessary de-
tours3,4). Furthermore, these companies can use the information
provided by our system as a reference to adjust insurance rates,
avoid financial loss, and promote passenger safety while preserving
the driver’s privacy, e.g., by reducing the need for frequent face
recognition checks5.

2 PROBLEM AND SYSTEM OVERVIEW
2.1 System Overview
The overall workflow of RM-Drive is illustrated in Fig. 3, which
basically consists of the following three phases:
(1) Data Pre-processing: We use two driver trajectory datasets
(see Appendix A and E), one from Porto, Portugal and the other
fromRome, Italy, for our RM-Drive’s development and experimental
studies. In the pre-processing phase (Sec. 2.2), after removing the
outliers (noisy GPS coordinate points), we first perform temporal
discretization to divide each day into 𝑇 time intervals with equal
lengths. Next, based on the defined time intervals, givenH𝑙 andW𝑙

as the height and width of the 𝑙-th spatial resolution, we perform
spatial discretization to generate a grid-map for each time interval.

Given the raw GPS trajectories of a driver, we divide the trajecto-
ries into𝑇 groups based on their timestamps and convert them into
series of grid-cells, i.e., discretized trajectories. The information
maintained from the trajectories depends onH𝑙 andW𝑙 . Therefore,
we define multiple spatial resolutions to realize adaptive feature
extraction and mitigate spatial information loss. More specifically,
the extracted features from each resolution contain distinctive and
useful mobility information, and the combination of extracted fea-
tures from all the resolutions would further assist the model to
learn more distinctive DMFs.
3https://www.nbcboston.com/news/local/19-charged-in-ride-hailing-fake-driver-
account-scheme/2375154/
4https://chicago.suntimes.com/news/2021/4/9/22375802/chicago-carjackings-ride-
hailing-services-uber-rider-verification-feature-anonymous-payments
5https://www.earlynewspaper.com/uber-under-pressure-over-facial-recognition-
checks-for-drivers/
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Figure 3: Overview of the proposed framework.

Figure 4: (a) Total trajectories of 100 drivers from each
dataset over amonth period. (b) Trajectories of four dri-
vers from 𝐷𝑆1 at 10:00am – 11:00am over a month.

(2) Feature Extraction: Then, we convert each group of trajecto-
ries into state-action pairs and formulate the ST-IRL problem (Sec.
3.2), and extract spatio-temporal DMFs based on the time interval
and resolution of the given trajectories. Our ST-IRL module recov-
ers the reward and policy base-maps per each group of trajectories
that characterize the driver’s decision-making behavior patterns
in a specific time interval and a given resolution. Furthermore, we
define several categories of POIs (see Appendix A) and calculate
base-maps for each category with multiple resolutions, which ba-
sically records the density of each category of POIs on the map.
We then use the set of the base-maps to create several heat-maps
for each trajectory (i.e., input mobility fingerprint tensor) with dif-
ferent resolutions. These heat-maps are fused with the weather
feature vectors (see Appendix A) via the multi-resolution trajectory
embedding network (MTE-Net) (Sec. 4.2).
(3)Driver Classification & Anomaly Detection: This stage con-
sists of two tasks: (i) for driver classification, we feed the input
mobility fingerprint tensors of the trajectories with the drivers’
labels as the ground-truth values to the MTE-Net, which leverages
multi-resolution convolutional neural network (MR-CNN) to iden-
tify the drivers; (ii) for anomaly detection, we leverage the siamese
network [2] (Sec. 4.2). We use two MTE-Net modules with identi-
cal network structures and construct a binary classifier for driver
anomaly detection.

2.2 Important Concepts
We then present the important concepts for our formulation.
• Raw Driver Trajectory Data: Taking into account that each
vehicle is equipped with a GPS sensor, a driver d generates a series
of GPS coordinate points (with longitudes and latitudes), each of
which is given by {longitude, latitude, timestamp}. Thus, we define
the set of trajectories generated by a driver d as

T𝑑 = {𝜏𝑑1 , 𝜏
𝑑
2 , ..., 𝜏

𝑑
𝑁𝑑
}, (1)

where 𝜏𝑑
𝑗
is the 𝑗-th raw trajectory of driver 𝑑 , and 𝑁𝑑 is the total

number of trajectories of this driver.
Fig. 4(a) shows the aggregate trajectories of 100 drivers from each

of the datasets. As mentioned earlier, we discretize a day (24 hours)
into 𝑇 time intervals, which we use to divide and aggregate the
trajectories of each driver into 𝑇 groups based on their timestamps.

More specifically, each group contains the trajectories of a driver
that occur at a specific time interval during a period of time (e.g.,
all the trajectories that have happened at 8:00am to 9:00am over a
month period). The reason behind this aggregation is to mitigate
the negative effects of similar spatial activities of drivers, especially,
in smaller cities, where drivers take more similar routes compared
to large cities. Fig. 4(b) shows the trajectories of four random drivers
that belong to a single time interval during a one-month period,
which indicates that drivers have distinctive driving patterns during
different times of the day and validate the effectiveness of the
proposed grouping strategy. Details of the sample trajectories can
be referred to Fig. 21 in Appendix D.
• Temporal & Spatial Discretization: We divide each day into
𝑇 equal intervals {𝑞1, 𝑞2, ..., 𝑞𝑇 }. Thus, each point in a trajectory
falls into one of the above-mentioned intervals based on its times-
tamp. Similarly, we spatially convert the city map into anH𝑙 ×W𝑙

grid-map whereH𝑙 andW𝑙 respectively represent the number of
latitude-wise and longitude-wise discretizations. Each grid-cell is
rectangular and of equal size in our settings. We let 𝑙 be the 𝑙-th
resolution (totally three resolutions in our studies). For each reso-
lution, we build𝑇 grid-maps {𝐺1

𝑙
,𝐺2

𝑙
,𝐺3

𝑙
, · · · ,𝐺𝑇

𝑙
} for the city map

(i.e., one grid-map per each time interval), and each 𝐺𝑡
𝑙
represents

anH𝑙 ×W𝑙 matrix:

𝐺𝑡
𝑙
=


𝑔𝑡
𝑙
[1, 1] 𝑔𝑡

𝑙
[1, 2] · · · 𝑔𝑡

𝑙
[1,W𝑙 ]

.

.

.
.
.
.

.

.

.
.
.
.

𝑔𝑡
𝑙
[H𝑙 , 1] 𝑔𝑡

𝑙
[H𝑙 , 2] · · · 𝑔𝑡

𝑙
[H𝑙 ,W𝑙 ]

 , (2)

where 𝑔𝑡
𝑙
[ℎ,𝑤] is the grid-cell at the h-th row and the w-th column

of grid-map 𝐺𝑡
𝑙
with the 𝑙-th resolution, and 𝑡 ∈ {1, ...,𝑇 }.

• Discretized Trajectory: Based on the time and space discretiza-
tion, we can discretize the 𝑗-th trajectory of driver 𝑑 , 𝜏𝑑

𝑗
, with

multiple different resolutions. To discretize the raw trajectory 𝜏𝑑
𝑗

with the 𝑙-th resolution, we map each point 𝑝 in the trajectory,
with {long, lat, ts} as its longitude, latitude, and timestamp respec-
tively, towards a grid-cell 𝑔𝑡

𝑙
[ℎ,𝑤]. In other words, the coordinates

< long, lat > fall in 𝑔𝑡
𝑙
[ℎ,𝑤], and the timestamp ts ∈ 𝑞𝑡 . We denote

the series of such grid-cells of the 𝑗-th discretized trajectory of the
driver 𝑑 at the 𝑡-th time interval given the 𝑙-th resolution by (𝜏𝑑,𝑡

𝑙, 𝑗
)′.
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Thus, we define (T𝑑,𝑡

𝑙
)′ = {(𝜏𝑑,𝑡

𝑙,1 )
′, · · · , (𝜏𝑑,𝑡

𝑙,𝑁𝑑
)′} as the set of all

the discretized trajectories generated by driver d at time interval 𝑞𝑡 ,
where each trajectory (𝜏𝑑,𝑡

𝑙, 𝑗
)′ is a series of grid-cells, thus forming

a discretized trajectory.

2.3 Problem Formulation & Definition
Based on above concepts, we further define different mobility fea-
tures that are extracted from a driver’s trajectory, and then present
the problem formulation of RM-Drive.
• Base-Map & Main Features: We define a base-map as anH𝑙 ×
W𝑙 matrix with normalized values in [0, 1] to represent different
features of spatial inputs. We can use such base-maps to create tra-
jectory heat-maps by calculating the intersection of the discretized
trajectories and base-maps as illustrated in Fig. 5. For each disretized
trajectory (𝜏𝑑,𝑡

𝑙, 𝑗
)′, we create reward/policy heat-maps denoted by

𝜒
𝑑,𝑡

𝑙, 𝑗
and 𝜓𝑑,𝑡

𝑙, 𝑗
, which are generated from reward R𝑑,𝑡

𝑙
and policy

𝜋
𝑑,𝑡

𝑙
base-maps.
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Heat-Map

A Base-map

1.0

0.0

Figure 5: An example of creating
a trajectory heat-map from a base-
map.
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heat-map.
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7
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Figure 7: Input mobility finger-
print tensor and weather feature
vector of a discretized trajectory.

In addition, as illustrated in
Fig. 6, from the discretized tra-
jectory, (𝜏𝑑,𝑡

𝑙, 𝑗
)′, we create the

stay-duration heat-map denoted
as 𝜙𝑑,𝑡

𝑙, 𝑗
where the value of each

grid-cell represents the num-
ber of trajectory points in this
grid.𝜙𝑑,𝑡

𝑙, 𝑗
, 𝜒𝑑,𝑡

𝑙, 𝑗
and𝜓𝑑,𝑡

𝑙, 𝑗
together

form the main features.
For each heat-map, the higher

values (indicated by darker col-
ors) of a grid-cell represent a
higher reward/value learned by

ST-IRL for reward/policy heat-maps, or more re-visitations or
longer stay-duration by the driver for the stay-duration heat-map.
• Contextual Factors: We createZ categories of POIs, and gen-
erate a total of Z base-maps {P1, · · · ,PZ} based on their distri-
butions upon the map. Therefore, we use each of these base-maps
to create Z heat-maps o𝑑,𝑡

𝑙, 𝑗
for a discretized trajectory (𝜏𝑑,𝑡

𝑙, 𝑗
)′ in

the same way as above. Besides, according to the time interval of
each trajectory, we consider a set of 7 weather features, e.g., tem-
perature, rain, and snow, as another contextual factor. Thus, we
define a vector 𝑐𝑑,𝑡

𝑗
∈ IR1×7 for a discretized trajectory

(
𝜏
𝑑,𝑡

𝑙, 𝑗

) ′
as

the additional weather feature vector.

• Input Mobility Fingerprint Tensor: Integrating all the main
and contextual factors introduced above, we convert (𝜏𝑑,𝑡

𝑙, 𝑗
)′, the

𝑗-th discretized trajectory of driver 𝑑 from the 𝑡-th time interval, to
an input mobility fingerprint tensor (Fig. 7) with the 𝑙-th resolution
as follows:

𝑓
𝑑,𝑡

𝑙, 𝑗
=

(
𝜙
𝑑,𝑡

𝑙, 𝑗
, 𝜒

𝑑,𝑡

𝑙, 𝑗
,𝜓

𝑑,𝑡

𝑙, 𝑗
, o𝑑,𝑡

𝑙, 𝑗

)
, (3)

where 𝜙𝑑,𝑡
𝑙, 𝑗
∈ IRH𝑙×W𝑙 is the stay-duration heat-map, and 𝜒

𝑑,𝑡

𝑙, 𝑗
∈

IRH𝑙×W𝑙 and𝜓𝑑,𝑡

𝑙, 𝑗
∈ IRH𝑙×W𝑙 are heat-maps generated from reward

and policy base-maps respectively (based on the time intervals of
the trajectories) provided by the ST-IRL module.

Furthermore, we have the set of POI heat-maps created fromZ
POI categories,

o𝑑,𝑡
𝑙, 𝑗

= {o𝑑,𝑡
𝑙, 𝑗
[1], · · · , o𝑑,𝑡

𝑙, 𝑗
[Z]}, (4)

where each o𝑑,𝑡
𝑙, 𝑗
[𝑧] ∈ IRH𝑙×W𝑙 , 𝑧 ∈ {1, ...,Z} is a heat-map gen-

erated from one base-map of a POI category 𝑧. For each driver 𝑑
at the 𝑡-th time interval with the 𝑙-th resolution, after obtaining
the discretized trajectories (T𝑑,𝑡

𝑙
)′ = {(𝜏𝑑,𝑡

𝑙,1 )
′, · · · , (𝜏𝑑,𝑡

𝑙,𝑁𝑑
)′}, we

correspondingly denote the set of all the input mobility fingerprint
tensors and weather feature vectors as F𝑑,𝑡

𝑙
= {𝑓 𝑑,𝑡

𝑙,1 , · · · , 𝑓 𝑑,𝑡
𝑙,𝑁𝑑
}, and

C𝑑,𝑡 = {𝑐𝑑,𝑡1 , · · · , 𝑐𝑑,𝑡
𝑁𝑑
}, respectively.

• Problem Statement of RM-Drive: Given historical trajectories
of D drivers {T 1, · · · ,T D }, we aim at using the multi-resolution
input mobility fingerprint tensors, i.e.,

{{F 1,1
𝑙

, · · · , F 1,𝑇
𝑙
}, · · · , {F D,1

𝑙
, · · · , F D,𝑇

𝑙
}}, (5)

extracted from discretized trajectories, i.e.,
{{(T 1,1

𝑙
)′, · · · , (T 1,𝑇

𝑙
)′}, · · · , {(T D,1

𝑙
)′, · · · , (T D,𝑇

𝑙
)′}}, (6)

where 𝑙 ∈ {1, 2, 3}, along with the weather feature vectors,
{{C1,1, · · · , C1,𝑇 }, · · · , {CD,1, · · · , CD,𝑇 }}, (7)

as inputs for RM-Drive, the DMF identification framework, to train
the model for driver classification and anomaly detection. In partic-
ular, given a new driver trajectory, RM-Drive identifies if a target
driver has generated the input trajectory (anomaly detection), as
well as classifies which driver this trajectory likely belongs to (dri-
ver classification).

3 TRAJECTORY FEATURE EXTRACTION
3.1 Overview of Spatio-Temporal IRL
Using hand-crafted feature-engineering or simple feature extraction
methods on GPS historical trajectories may not necessarily result in
a highly accurate model for DMF identification. One may consider
the drivers as the agents, and learn the drivers’ decision-making
behaviors via series of state-action pairs in the context of reinforce-
ment learning (RL). The resulting reward and policy values may
characterize the drivers’ behaviors and form the DMFs. However,
the reward and policy values in the conventional RL context are not
available in our trajectories to reflect our drivers’ decision-making
behavior patterns and the latent driver identities.

To address this, we consider spatio-temporal inverse reinforce-
ment learning (ST-IRL) to recover the reward and the policy, i.e.,
DMFs; the recovered reward and the policy are formed as base-maps,
and are used to create the reward 𝜒

𝑑,𝑡

𝑙, 𝑗
and policy𝜓𝑑,𝑡

𝑙, 𝑗
heat-maps.
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To transform our problem into the inverse reinforcement learning
context [31], we first convert the discretized trajectories of the dri-
vers to series of state-action pairs (Sec. 3.2). Then, we feed series
of such state-action pairs to ST-IRL to learn the reward and the
policy base-maps (Sec. 3.3). These indicate the inherent mobility
features and the drivers’ decision-making behavior patterns and
will serve as features to create distinctive DMFs for identification.

3.2 Formulation for ST-IRL in RM-Drive
• States &Agents: Considering the temporal and spatial discretiza-
tion described in the previous sections, we define one state per each
grid-cell of each grid-map. Consequently, the state-space consists
of𝑇 state-map matrices {S1

𝑙
,S2

𝑙
, ...,S𝑇

𝑙
} withH𝑙 ×W𝑙 dimensions.

Each state-map S𝑡
𝑙
is defined as follows:

S𝑡
𝑙
=


𝑠𝑡
𝑙
[1, 1] 𝑠𝑡

𝑙
[1, 2] · · · 𝑠𝑡

𝑙
[1,W𝑙 ]

.

.

.
.
.
.

.

.

.
.
.
.

𝑠𝑡
𝑙
[H𝑙 , 1] 𝑠𝑡

𝑙
[H𝑙 , 2] · · · 𝑠𝑡

𝑙
[H𝑙 ,W𝑙 ]

 , (8)

where 𝑠𝑡
𝑙
[ℎ,𝑤] is the state at the h-th row and the w-th column of

state-map S𝑡
𝑙
that corresponds to grid-cell 𝑔𝑡

𝑙
[ℎ,𝑤] of grid-map𝐺𝑡

𝑙
.

In our study, we define each driver 𝑑 as an agent, and we can use
states to represent previous locations (i.e., grid-cells) of the agent.
• Actions A: For each state, we define the set of actions A =

{𝑎1, 𝑎2, ..., 𝑎9}, each of which, from 𝑎1 to 𝑎9, respectively represents
east, west, south, north, south-east, north-west, south-west, north-
east, and stay (i.e., stay in the current state). We further illustrate
the possible actions from a given state 𝑠𝑡

𝑙
[ℎ,𝑤] to its neighborhood

states in Fig. 8. We note that some of the actions are not available
in certain states due to the grid-map boundary. For instance, for
the state 𝑠𝑡

𝑙
[0, 0] in Fig. 8, there are only three possible actions (i.e.,

east, south, and south-east) to neighborhood states. Furthermore,
we confine the actions of transitions to only the potential states
that are in the same time interval.

Stay in current state

Figure 8: Possible actions in different states.

• State-Action Trajectory: Given the state and the action space
defined ealier, we transform each discretized trajectory into a se-
ries of state-action pairs (𝑠𝑡

𝑙
[ℎ,𝑤], 𝑎𝑘 ), 𝑠𝑡𝑙 [ℎ,𝑤] ∈ S

𝑡
𝑙
, 𝑎𝑘 ∈ A.

Then, given the 𝑇 time intervals (say, each is 1h in our case),
we divide the state-action trajectories of driver 𝑑 over a period
of Ltrain consecutive days into 𝑇 subsets {T̃𝑑,1

𝑙
, T̃𝑑,2

𝑙
, · · · , T̃𝑑,𝑇

𝑙
},

where T̃𝑑,𝑡

𝑙
= {𝜏𝑑,𝑡

𝑙,1 , · · · , 𝜏
𝑑,𝑡

𝑙,𝑁𝑑
} are the trajectories of driver 𝑑 over

a period of Ltrain days that have occurred at the 𝑡-th time interval
𝑞𝑡 (such as 8:00 – 9:00am over 25 days).
•Reward&PolicyBase-Maps: For eachS𝑡

𝑙
, given driver𝑑 , ST-IRL

recovers the reward base-map R𝑑,𝑡
𝑙
∈ IRH𝑙×W𝑙 using state-action

trajectories of driver 𝑑 at the 𝑡-th time interval, T̃𝑑,𝑡

𝑙
, over a period

Figure 9: (a) An example of policy base-map; (b) an example of nor-
malized policy base-map.

of Ltrain days. We define each reward base-map R𝑑,𝑡
𝑙

as

R𝑑,𝑡
𝑙

=


𝑟
𝑑,𝑡

𝑙
[1, 1] 𝑟

𝑑,𝑡

𝑙
[1, 2] · · · 𝑟

𝑑,𝑡

𝑙
[1,W𝑙 ]

.

.

.
.
.
.

.

.

.
.
.
.

𝑟
𝑑,𝑡

𝑙
[H𝑙 , 1] 𝑟

𝑑,𝑡

𝑙
[H𝑙 , 2] · · · 𝑟

𝑑,𝑡

𝑙
[H𝑙 ,W𝑙 ]

 , (9)

where 𝑟𝑑,𝑡
𝑙
[ℎ,𝑤] corresponds to the reward value of driver𝑑 at state

𝑠𝑡
𝑙
[ℎ,𝑤]. Besides, after recovering each reward base-map, ST-IRL

returns the optimal policy base-map 𝜋𝑑,𝑡
𝑙
∈ IRH𝑙×W𝑙 corresponding

to R𝑑,𝑡
𝑙

with the approximate value-iteration algorithm [31]. We
define each policy base-map 𝜋

𝑑,𝑡

𝑙
as

𝜋
𝑑,𝑡

𝑙
=


𝑣
𝑑,𝑡

𝑙
[1, 1] 𝑣

𝑑,𝑡

𝑙
[1, 2] · · · 𝑣

𝑑,𝑡

𝑙
[1,W𝑙 ]

.

.

.
.
.
.

.

.

.
.
.
.

𝑣
𝑑,𝑡

𝑙
[H𝑙 , 1] 𝑣

𝑑,𝑡

𝑙
[H𝑙 , 2] · · · 𝑣

𝑑,𝑡

𝑙
[H𝑙 ,W𝑙 ]

 , (10)

where 𝑣𝑑,𝑡
𝑙
[ℎ,𝑤] represents the index of the action that should be

taken in state 𝑠𝑡
𝑙
[ℎ,𝑤]. Fig. 9(a) illustrates an example of a policy

base-map, where each value indicates the index of the proposed
action by the policy in that state. For instance, the elements with
a value of 4 at the bottom of the policy base-map represent the
action 𝑎4=north for the corresponding states there. Furthermore,
as depicted in Fig. 9(b), we normalize the policy base-map by the
total number of actions (i.e., 9).
• Problem of ST-IRL: Given historical state-action trajectories
T̃𝑑,𝑡

𝑙
, ST-IRL in our RM-Drive aims to recover the reward R𝑑,𝑡

𝑙
and

policy 𝜋
𝑑,𝑡

𝑙
base-maps.

As discussed in Sec. 3.1, RL is not applicable in our case because
of unknown reward values. Therefore, we leverage ST-IRL to re-
cover the reward and policy base-maps based on the given historical
trajectories and output the features that are dependent upon the
drivers’ identities. According to [31], given state-action trajecto-
ries T̃𝑑,𝑡

𝑙
, the problem of recovering reward base-map R𝑑,𝑡

𝑙
with

model parameters 𝜃 is formulated into the following maximization
problem in Bayesian statistics context, i.e.,

𝐽 (𝜃 ) = log 𝑃 (T̃𝑑,𝑡

𝑙
, 𝜃 |R𝑑,𝑡

𝑙
) = log 𝑃 (T̃𝑑,𝑡

𝑙
|R𝑑,𝑡

𝑙
) + log 𝑃 (𝜃 ), (11)

where the objective is to maximize the joint posterior distribu-
tion of the state-action trajectories T̃𝑑,𝑡

𝑙
being generated given

reward base-map R𝑑,𝑡
𝑙

. Let 𝐽1 be the posterior probability term
log 𝑃 (T̃𝑑,𝑡

𝑙
|R𝑑,𝑡

𝑙
), and 𝐽2 be the model parameter regularization

term log 𝑃 (𝜃 ) in Eq. (11). The gradient of 𝐽 (𝜃 ) is then given by
the sum of the gradients of 𝐽1 and 𝐽2 with respect to the model
parameters 𝜃 i.e.,

𝜕𝐽 (𝜃 )
𝜕𝜃

=
𝜕𝐽1
𝜕𝜃
+ 𝜕𝐽2

𝜕𝜃
, where

𝜕𝐽1
𝜕𝜃

=
𝜕𝐽1

𝜕R𝑑,𝑡
𝑙

×
𝜕R𝑑,𝑡

𝑙

𝜕𝜃
. (12)
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It is shown in [33] that the gradients of the maximum entropy cost
function with respect to the reward base-map 𝜕𝐽1

𝜕R𝑑,𝑡
𝑙

equals to the

difference in state-visitation counts of the state-action trajectories
T̃𝑑,𝑡

𝑙
, and the expected visitation counts based on the derived policy,

i.e.,
𝜕𝐽1

𝜕R𝑑,𝑡
𝑙

= 𝜇 T̃𝑑,𝑡
𝑙

− 𝐸 [𝜇] . (13)

Note that we slightly adapt the gradients to be only applied to
reward of states along the given state-action trajectories, i.e., states
visited by at least one trajectory in T̃𝑑,𝑡

𝑙
, and this minor change

helps to provide a less noisy reward and policy base-maps in fewer
iterations.

3.3 Policy & Reward Learning in ST-IRL
We further discuss how to use ST-IRL to recover reward and policy
base-maps, i.e., {R𝑑,1

𝑙
, · · · ,R𝑑,𝑇

𝑙
} and {𝜋𝑑,1

𝑙
, · · · , 𝜋𝑑,𝑇

𝑙
}, for driver 𝑑

within the past Ltrain days.
We detail the learning process of our ST-IRL in Algorithm (1). It

takes in states features 𝑓S (see Appendix C for details), and the state-
action trajectories T̃𝑑,𝑡

𝑙
, and outputs the recovered reward R𝑑,𝑡

𝑙
and

policy 𝜋𝑑,𝑡
𝑙

base-maps. In particular, at each iteration, we update the
reward base-map by feeding the states features 𝑓S to the network
(Line 6). Then, we use the updated reward base-map R𝑑,𝑡

𝑙
to derive

the policy base-map 𝜋
𝑑,𝑡

𝑙
using the value-iteration algorithm (Line

7). Finally, we calculate the gradients according to Eq. (12) and
update the network parameters (Lines 8 and 9).

Algorithm 1: Learning Reward and Policy with IRL.

1 Inputs: States Features 𝑓S , Disretized Trajectories T̃𝑑,𝑡
𝑙

.
2 Outputs: Reward R𝑑,𝑡

𝑙
, Policy 𝜋

𝑑,𝑡

𝑙
Base-Maps.

3 R𝑑,𝑡
𝑙
← Initialize as an H𝑙 × W𝑙 zero matrix;

4 𝜃 ← Initialize network parameters;
5 for 𝑘 ← 0 to 𝑁iterations do
6 R𝑑,𝑡

𝑙
← Feed 𝑓S to the network and predict the reward;

7 𝜋
𝑑,𝑡

𝑙
← Calculate policy using approximate-value-iteration;

8
𝜕𝐽 (𝜃 )
𝜕𝜃
← Calculate gradients;

9 𝜃 ← Update network parameters using the gradients;

10 return R𝑑,𝑡
𝑙

, 𝜋
𝑑,𝑡

𝑙

We note that ST-IRL recovers the reward and policy base-maps
based on the resolution of the trajectories. Therefore, we feed a
group of trajectories to ST-IRL multiple times with different reso-
lutions to produce the aforementioned base-maps, which we use
to create multi-resolution input mobility fingerprint tensors that
serve as the input for our driver classification and anomaly detec-
tion (Sec. 4) as illustrated in Fig. 11. As stated in Sec. 2.2, we use
the recovered reward R𝑑,𝑡

𝑙
and policy 𝜋

𝑑,𝑡

𝑙
base-maps to create the

reward 𝜒
𝑑,𝑡

𝑙, 𝑗
and the policy𝜓𝑑,𝑡

𝑙, 𝑗
trajectory heat-maps for given dis-

cretized trajectory
(
𝜏
𝑑,𝑡

𝑙, 𝑗

) ′
. Fig. 10 further shows an example of an

input mobility fingerprint tensor created for a discretized trajectory
using reward, policy, and two POI category base-maps.

Stay-Duration 
Heat-Map Base-

Maps

Heat-
Maps

Reward Policy POI-1 POI-
1.0

0.8

0.6

0.4

0.2

0.0

Figure 10: An example of creating input mobility fingerprint tensor
for a discretized trajectory from dataset 𝐷𝑆1.
4 MOBILITY FINGERPRINT IDENTIFICATION
4.1 Overview of Identification Designs
As stated earlier, single-resolution mobility features may not main-
tain all the important information that is critical to capture the
complex decision-making behavior patterns of the drivers. Conse-
quently, we consider creating drivers’ input mobility fingerprint
tensors with multiple resolutions to enhance the identification ac-
curacy.

In particular, in this study, for each driver’s trajectory, we gen-
erate three input mobility fingerprint tensors (𝑓 𝑑,𝑡

𝑙, 𝑗
) (𝑙 ∈ {1, 2, 3})

with three resolutions, each of which consists of (Z + 3) heat-
maps, including stay-duration heat-map, heat-maps created from
reward, policy, andZ = 11 categories of POI base-maps. Then, we
employ multi-resolution trajectory embedding network (MTE-Net)
(Sec. 4.2), which consists of three trajectory encoder networks as
shown in Fig. 11, to process and generate embeddings for the three
resolutions.

Each trajectory encoder network consists of two sub-modules,
(i) reward-policy network (RP-Net) to learn and predict the reward
and policy heat-maps; (ii) a multi-resolution convolutional neu-
ral network (MR-CNN) to further embed under multiple resolutions.
Afterward, we concatenate the embeddings of the input mobility
fingerprint tensors with the weather feature vector 𝜁 (𝑐𝑑,𝑡

𝑗
) gen-

erated by a fully connected layer (FC). This way, we obtain the
final trajectory embedding 𝜔𝑑,𝑡

𝑗
for DMF identification. Specifically,

we feed it to the softmax function along with the driver’s label to
perform driver classification. In terms of final identification tasks,
we use the siamese network for anomaly detection; we feed the
final embeddings, 𝜔𝑑1,𝑡

𝑗
and 𝜔

𝑑2,𝑡
𝑘

, of two discretized trajectories,

(𝜏𝑑1,𝑡
𝑙, 𝑗
)′ and (𝜏𝑑2,𝑡

𝑙,𝑘
)′, to the softmax classifier for anomaly detection.

4.2 Multi-Resolution Trajectory Embedding
Network

• Input: We have shown in Sec. 3.3 how our ST-IRL recovers the
reward and policy base-maps given a set of discretized trajectories,
which completes the definition of the input mobility fingerprint
tensor 𝑓 𝑑,𝑡

𝑙, 𝑗
=

(
𝜙
𝑑,𝑡

𝑙, 𝑗
, 𝜒

𝑑,𝑡

𝑙, 𝑗
,𝜓

𝑑,𝑡

𝑙, 𝑗
, o𝑑,𝑡

𝑙, 𝑗

)
(𝑙 ∈ {1, 2, 3}) for the discretized

trajectory (𝜏𝑑,𝑡
𝑙, 𝑗
)′. Furthermore, we defined the weather feature

vector 𝑐𝑑,𝑡
𝑗

as an additional contextual factor for each trajectory in
Sec. 2.2.
• Trajectory Encoder Network: For each input discretized tra-
jectory (𝜏𝑑,𝑡

𝑙, 𝑗
)′ with the 𝑙-th resolution, we use trajectory encoder

network 𝐸𝑙 to generate one embedding from the input mobility



Reinforced Feature Extraction and Multi-Resolution Learning for Driver Mobility Fingerprint Identification SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

+3
1

1

+3
3

3

+3
2

2

Trajectory 
Encoder 
Network

Multi-Resolution Input 
Mobility Fingerprint Tensors

Final 
Embedding

Trajectory 
Encoder 
Network

Trajectory 
Encoder 
Network

7
Two FC Layers

Concat

Figure 11: Multi-resolution trajectory embedding network architec-
ture.
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Figure 12: Structure of trajectory encoder network.

fingerprint tensor 𝑓 𝑑,𝑡
𝑙, 𝑗

. Fig. 12 illustrates the trajectory encoder net-
work, which conducts the following three tasks. (a) The trajectory
encoder network learns to reconstruct trajectory reward 𝜒

𝑑,𝑡

𝑙, 𝑗
and

policy𝜓𝑑,𝑡

𝑙, 𝑗
heat-maps given the stay-duration heat-map 𝜙𝑑,𝑡

𝑙, 𝑗
using

RP-Net at training-phase. (b) We concatenate the stay-duration,
reconstructed reward 𝜒

𝑑,𝑡

𝑙, 𝑗
and policy𝜓𝑑,𝑡

𝑙, 𝑗
heat-maps, with the ones

regarding POIs, o𝑑,𝑡
𝑙, 𝑗

, to get the reconstructed mobility fingerprint

tensor 𝑓 𝑑,𝑡
𝑙, 𝑗

= {𝜙𝑑,𝑡
𝑙, 𝑗

, 𝜒
𝑑,𝑡

𝑙, 𝑗
,𝜓

𝑑,𝑡

𝑙, 𝑗
, o𝑑,𝑡

𝑙, 𝑗
}. (c) The trajectory encoder net-

work generates the embedding 𝐸𝑙

(
𝑓
𝑑,𝑡

𝑙, 𝑗

)
using MR-CNN for later

anomaly detection and driver classification.
(i) RP − Net Designs: We first train RP-Net to reconstruct the re-
ward 𝜒

𝑑,𝑡

𝑙, 𝑗
and the policy 𝜓𝑑,𝑡

𝑙, 𝑗
heat-maps of the given discretized

trajectory
(
𝜏
𝑑,𝑡

𝑙, 𝑗

) ′
. Then, at testing-phase, we feed only the stay-

duration heat-map 𝜙𝑑,𝑡
𝑙, 𝑗

to the RP-Net to get the reward and policy
heat-maps. The network structure of RP-Net consists of 2D-CNN
and 2D-CNN-transpose blocks given by

ℎ′𝑖 = LReLU(BatchNorm(Conv2D(𝑥))),
ℎ̄𝑖 = LReLU(BatchNorm(Conv2DTranspose(𝑥))),

(14)

where 𝑥 is the input tensor before each layer, and LReLU is the leaky
rectified linear unit activation function [12] that is used to add non-
linearity. As illustrated in Fig. 13, to process the input, RP-Net uses
three 2D-CNN blocks that are followed by three 2D-CNN-transpose
blocks to adjust the output dimensions.

Given the reward 𝜒
𝑑,𝑡

𝑙, 𝑗
and the policy𝜓𝑑,𝑡

𝑙, 𝑗
heat-maps as ground-

truth values, we calculate the mean absolute error (MAE) as the loss
with tunable parameters 𝛼 and 𝛽 and use it to update the RP-Net
parameters, i.e.,
𝐽 ((𝜒𝑑,𝑡

𝑙, 𝑗
,𝜓

𝑑,𝑡

𝑙, 𝑗
), (𝜒𝑑,𝑡

𝑙, 𝑗
,𝜓

𝑑,𝑡

𝑙, 𝑗
) = 𝛼 · ( |𝜒𝑑,𝑡

𝑙, 𝑗
− 𝜒

𝑑,𝑡

𝑙, 𝑗
|) + 𝛽 · ( |𝜓𝑑,𝑡

𝑙, 𝑗
−𝜓𝑑,𝑡

𝑙, 𝑗
|) .

,( )

2D-CNN Block, 8, 3x3
2D-CNN Block, 16, 5x5
2D-CNN Block, 32, 7x7

CNN-Transpose Block, 64, 7x7 
CNN-Transpose Block, 2, 3x3

CNN-Transpose Block, 128, 5x5 

( )Stay-Duration 
Heat-Map

Predicted Reward & Policy Heat-Maps

Figure 13: The network structure of the RP-Net.
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+ 3
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Figure 14: The network structure of the MR-CNN.

In testing-phase, the reward 𝜒
𝑑,𝑡

𝑙, 𝑗
and the policy𝜓𝑑,𝑡

𝑙, 𝑗
heat-maps are

not available, and we use RP-Net to reconstruct these heat-maps
given the stay-duration heat-map 𝜙𝑑,𝑡

𝑙, 𝑗
.

(ii) MR − CNN Designs: After RP-Net, we further use MR-CNN to
process the reconstructed mobility fingerprint tensor. In addition
to the 2D-CNN block, MR-CNN consists of the flatten operation and
fully connected (FC) layers given by

𝑧′𝑖 = Dropout(Flatten(𝑥)),
𝑧𝑖 = LReLU(Dropout(BatchNorm(FC(𝑥)))), (15)

where FC represents fully connected layers, Flatten converts a ten-
sor into a one dimensional vector, and Dropout adds regularization
effects [12]. As illustrated in Fig. 14, MR-CNN processes the recon-
structed mobility fingerprint tensor 𝑓 𝑑,𝑡

𝑙, 𝑗
with three components

with different complexities without pooling layers (Appendix C),
where the complex component uses more filters and smaller kernel
compared to the intermediary and simple components. This way,
the model can learn more distinctive DMFs with each component.
• Output: As shown in Sec. 4.2, the resulting embeddings 𝐸𝑙

(
𝑓
𝑑,𝑡

𝑙, 𝑗

)
(𝑙 ∈ {1, 2, 3}) of all three resolutions, as well as the embedding of
the weather feature vector 𝜁 (𝑐𝑑,𝑡

𝑗
) calculated by a fully connected

layer are concatenated together and fed as the final embedding𝜔𝑑,𝑡
𝑗

of a trajectory and the contextual factors, i.e.,

𝜔
𝑑,𝑡
𝑗

= Concat
(
𝐸1

(
𝑓
𝑑,𝑡
1, 𝑗

)
, 𝐸2

(
𝑓
𝑑,𝑡
2, 𝑗

)
, 𝐸3

(
𝑓
𝑑,𝑡
3, 𝑗

)
, 𝜁 (𝑐𝑑,𝑡

𝑗
)
)
. (16)

4.3 Driver Classification & Anomaly Detection
• Driver Classification: For driver classification (Fig. 15(a)), we
feed the final embedding vector𝜔𝑑,𝑡

𝑗
to a fully connected layer with

D (i.e., number of the drivers or classes) neurons followed by a
softmax function, i.e.,

𝜑𝑖 = Softmax(𝑢)𝑖 =
exp(𝑢𝑖 )∑D
𝑗

exp(𝑢 𝑗 )
. (17)

Finally, the cross entropy loss for the driver classification is then
calculated as

CrossEntropy = − log
(
𝜑𝑝

)
= − log

(
exp(𝑢𝑝 )∑D
𝑗

exp(𝑢 𝑗 )

)
, (18)



SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Mahan Tabatabaie, Suining He, and Xi Yang

where 𝑢𝑝 is the probability score of the softmax function on the
outputs of the final fully connected layer.
•AnomalyDetection:We leverage the siamese network (Fig. 15(b))
to detect whether a given trajectory is generated by a specific driver.
In particular, let (𝜏𝑑1,𝑡

𝑙, 𝑗
)′ and (𝜏𝑑2,𝑡

𝑙,𝑘
)′ be two discretized trajectories

from drivers 𝑑1 and 𝑑2 respectively, where 𝑙 ∈ {1, 2, 3}. We first use
two identical MTE-Net modules to generate the embeddings 𝜔𝑑1,𝑡

𝑗

and 𝜔𝑑2,𝑡
𝑘

. Then, we concatenate the generated embeddings Ω𝑑1,𝑑2

and feed them to a fully connected layer with two neurons, followed
by the softmax function for binary classification (i.e., anomaly or
normal), i.e.,

Ω𝑑1,𝑑2 = FC(Concat(𝜔𝑑1,𝑡
𝑗

, 𝜔
𝑑2,𝑡
𝑘
)) . (19)

We use the cross entropy in Eq. (18) as the loss function to train our
siamese network. We note that drivers 𝑑1 and 𝑑2 are either equal
for a normal case, or different drivers in case of an anomaly.

MTE-Net
Input Mobility 

Fingerprint Tensors 
of a Trajectory

Softmax
Classification

(a)

(b)
MTE-Net

MTE-NetInput Mobility 
Fingerprint 

Tensors of Two 
Trajectories

Concat Softmax

Anomaly Detection using Siamese Network

Figure 15: Driver classification & anomaly detection.

5 EXPERIMENTAL STUDIES
5.1 Experimental Settings
• Baselines: We compare RM-Drive with deep learning models
based on residual network (ResNet) [13], convolutional neural net-
work (CNN), long short-term memory (LSTM) [25], bidirectional
LSTM (BLSTM), stacked recurrent neural network (SRNN) [8], fully
connected (FC) networks, and three traditional machine learning
models, i.e., gradient boosting decision tree (GBDT) [28], random
forest (RF) [5], and support vector machine (SVM) [24]. We present
the details of the baselines in Appendix B. Our detailed settings, in-
cluding important parameters and experimental evaluation designs,
are presented in Appendix C.
•Metrics: To evaluate driver classification, we leverage top-5 accu-
racy (TP5), i.e., if the ground-truth class of a sample is equal to one
of the top-5 predictions of the model with the highest probabilities,
we label the result as 1 (0 otherwise) and find the percentage of
ones in all samples. Besides, we use Accuracy (i.e., the number of
correct predictions over the total number of samples) as another
metric for driver classification. For anomaly detection, the class
label is 1 for the anomalies (i.e., two trajectories from two different
drivers), and 0 for normal cases (i.e., two trajectories from the same
driver). Thus, precision, recall, and F1 values of the anomaly class
are also reported. We provide the details of the training and testing
sets in Appendix C.

5.2 Experimental Results
•Overall Performance: Tab. 1 shows the performance of RM-Drive
for the task of driver classification compared to the baselines. We
can see that RM-Drive outperforms the most accurate baseline
(CNN) in both 𝐷𝑆1 and𝐷𝑆2 datasets. It is evident that the recurrent

models do not perform as well as the CNN-based models, which
shows that the input mobility fingerprint tensors are more effective
than trajectory sequences in capturing the driver’s decision-making
behavior patterns. Traditional machine learning models cannot
adapt to high dimensions of the features and hence achieve lower
accuracy than ours. We also note that RM-Drive achieves robust
results over two different datasets with the same system parame-
ters including the resolutions and the network hyper-parameters,
demonstrating the adaptivity and generality of the proposed frame-
work.

Table 1: Driver classification results on 𝐷𝑆1 & 𝐷𝑆2 (%).

Model
TP5

DS1 DS2

Accuracy

DS1 DS2
Model

TP5

DS1 DS2

Accuracy

DS1 DS2
RM − Drive 74.2 71.4 62.6 60.3 LSTM 63.8 32.5 55.6 25.3
ResNet 59.6 54.4 51.2 48.8 FC 51.5 45.8 44.3 34.1
CNN 66.4 69.1 56.2 53.8 GBDT 57.2 32.6 46.3 21.1
BLSTM 64.4 32.7 52.3 24.8 RF 61.1 31.1 52.5 18.1
SRNN 59.1 31.1 52.5 23.2 SVM 32.5 23.3 17.1 10.3

Tab. 2 further demonstrates the anomaly detection task. We
can see that RM-Drive performs this task with better performance
compared to the baselines. As stated earlier, we set the class label
for the anomaly case as 1. Therefore, the high precision achieved
by our RM-Drive implies that the model has a low false-positive
rate and does not frequently label a normal case as an anomaly.

Table 2: Anomaly detection results on 𝐷𝑆1 & 𝐷𝑆2 (%).

Model
Accuracy

DS1 DS2

Precision

DS1 DS2

Recall

DS1 DS2

F1

DS1 DS2
RM − Drive 90.2 86.2 89.3 83.3 97.0 99.6 93.0 90.7
ResNet 86.0 84.0 88.7 81.3 91.1 92.8 89.9 86.7
CNN 80.0 81.3 80.1 82.2 92.9 91.6 86.2 86.9
BLSTM 69.0 63.0 68.8 62.5 61.1 63.0 61.2 50.6
SRNN 68.8 66.2 70.1 65.2 68.8 66.3 69.2 65.6
LSTM 61.4 59.2 55.0 78.0 61.4 59.2 56.3 58.6
FC 58.0 54.2 70.4 77.2 63.6 48.5 66.9 59.6
GBDT 79.1 77.1 83.8 75.8 83.2 84.1 83.5 79.7
RF 66.0 59.8 75.6 75.2 71.2 61.4 73.3 67.6
SVM 68.0 63.1 74.2 80.0 78.3 59.8 76.2 68.4

•Ablation Studies: We further conduct ablation studies to demon-
strate the importance of different components of RM-Drive and the
features used. In particular, we consider the following variations:
(1) the complete model with all the features, (2) without the weather
feature vector, (3) without all the contextual factors, (4) without
all the DMFs extracted with ST-IRL (i.e., reward and policy heat-
maps), (5) without both contextual factors and DMFs extracted
with ST-IRL, (6) with single resolution CNN with a similar struc-
ture to the complex component of MR-CNN, and (7) with using only
the highest resolution of the input mobility fingerprint tensor (i.e.,
50 × 50).

We illustrate the performance of the defined variations on 𝐷𝑆1
in Fig. 5.2(a). Clearly, removing the DMFs extracted by ST-IRL
causes two significant performance drops. Additionally, removing
the contextual factors also causes an accuracy drop, which accounts
for the importance of such factors to learn more distinctive DMFs.
Besides, the performance drops caused by the removal of MR-CNN
and the multi-resolution input mobility fingerprint tensors validate
importance of our multi-resolution model and indicate that input
DMF tensors with multiple resolutions are essential for a good
accuracy. We note that as the driver classification on a large number
of drivers is challenging, the removal of different components and
features results in more significant performance drops.
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Figure 16: (a) Ablation studies results. Sensitivity studies of (b) min-
imum trajectory length, (c) kernel’s size of MR-CNN, and (d) the num-
ber of days used in training-phase.
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Figure 17: Recovered reward&policy base-maps of five drivers from
𝐷𝑆1 with different resolutions at 18:00 – 19:00 time interval.
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Figure 18: Reward & policy heat-maps of five drivers from 𝐷𝑆1
• Sensitivity Studies: We have performed sensitivity studies re-
garding the following settings: (i) minimum length of the trajec-
tories, (ii) the kernel size of the CNN layers used in MR-CNN, and
(iii) the number of consecutive days over a one-month period that
we use to aggregate historical trajectories for training-phase (i.e.,
𝐿train). Fig. 5.2(b) shows the performance of RM-Drive when the
minimum length of the trajectories ranges from 5 to 25. We can see
that the maximum difference in the accuracy is at most 2% for both
driver classification and anomaly detection, which indicates that
our proposed model achieves robust accuracy given both short and
long trajectories. Fig. 5.2(c) shows that the performance starts to
degrade given larger kernels. We use 3 × 3, 5 × 5, and 7 × 7 kernels
for the components of MR-CNN. To measure the sensitivity of these
variables, we gradually increase the kernels’ size in four steps as
long as they are not limited by the input dimension (e.g., the kernels
are increased to 4 × 4, 6 × 6, and 8 × 8 in the first step). Fig. 5.2(d)
shows that the performance drops when a smaller number of days

is used. Therefore, to capture the complex DMFs, the data for more
than two weeks should be available.
• Visualization: We further visualize the recovered reward and
policy base-maps for five drivers in Fig. 17, which indicates that
multiple levels of resolutions help differentiate the DMFs. We then
show in Fig. 18 the random trajectories’ reward and policy heat-
maps from the stated drivers, in which we can observe that each
heat-map has an important role to make the whole input mobility
fingerprint tensor more distinctive. We also provide additional base-
maps with a different resolution and more trajectory heat-maps in
Figs. 20 and 21 in Appendix D.

6 RELATEDWORKS
• Driver Trajectory Data Mining: With recent advances in vehi-
cle computing (i.e., traffic data analysis [21, 27], driver behavior stud-
ies [22], etc.), and mobility data collection and management [19],
driver identification has attracted much attention. To extract fea-
tures from drivers’ trajectory data, variousmachine learningmodels
have been studied, including auto-encoder [3, 4]. Chen et al. [4] use
an auto-encoder to determine the sliding window size for statistical
feature extraction. Likewise, Chen et al. [3] introduced a regularized
auto-encoder architecture to learn the embeddings of taxi trips.

However, solely relying upon auto-encoder may likely ignore
critical spatio-temporal features after feature compression. Further-
more, while focusing on reconstructing the original input, auto-
encoder may not necessarily learn complex mobility features. Con-
sequently, to overcome the limitations of the auto-encoders, other
researchers have focused upon inverse reinforcement learning (IRL)
to process trajectories [31]. Unlike auto-encoder, IRL does not nec-
essarily require large amount of data to extract useful features and
hence can be updated more efficiently given new data.

Despite these prior studies on general mobility feature learning
(say, driving style [18], transportation-mode [32], and taxis’ learn-
ing process and working preferences [23, 30]), few of these have
specifically studied IRL for our target DMF identification. Besides,
our work advances in the following two perspectives. First, our pro-
posed ST-IRL design captures the spatio-temporal features of each
driver independently (i.e., via multiple reward and policy base-maps
per driver) rather than learning a single reward base-map for all the
drivers. This makes the learned features specifically representative
of each driver’s decision-making behavior patterns without taking
effect from other drivers’ data. Second, our design not only enables
a faster and parallel driver mobility learning process but also eases
the future feature updates for each driver given new trajectory data.
• Trajectory-based Driver Identification: Focusing on driver
trajectory processing, we further review the driver identification
in the following two categories.
(i) Driver Classification: Various learning models have been stud-
ied to support driver classification, which can be briefly divided
into the following two groups.
– Deep Learning Approaches: Some works built their models based
on recurrent neural networks (RNN), which processes sequences of
trajectory data. ARNet [8] learns trip-level and segment-level clas-
sification using a supervised auto-encoder with Gated Recurrent
Units (GRU). Fan et al. [10] used Bidirectional LSTM for human
trajectory identification. To further extract the driver mobility pat-
terns, 1D convolutional neural network (1D-CNN) has been adopted
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(in combination with LSTM or Simple RNN) for driver classification,
particularly based on the trajectory data [7, 9]. Such approaches,
however, could not fully extract the differentiable features between
drivers. Furthermore, many of the prior studies [20] have not taken
into account the different resolutions of the drivers’ data, leading
to potential information loss and performance degradation.
– Traditional Machine Learning Models: Aside from deep learn-
ing models, there are several other papers that employed simpler
machine learning models to build their classifiers, including Ran-
dom Forest [5], SVM [24], and Gradient Boosting Decision Tree
(GBDT) [28]. Compared with deep learning approaches, these mod-
els may not provide sufficient learnability and satisfactory results
upon large-scale driver data analytics.
(ii) Trajectory Anomaly Detection: Different from driver classi-
fication, anomaly detection focuses on determining whether a new
trajectory is likely anomalous considering the historical trajecto-
ries of a given driver. Dang et al. [6] proposed a siamese network
architecture [2] based on two identical LSTM modules to detect
anomalies in drivers’ future activities. Furthermore, Ren et al. [25]
proposed a similar architecture and improved the performance by
considering the transition mode of the trajectories (i.e., with or
without passengers) and driver profile features that were calculated
over time. Similarly, Wijnands et al. [29] presented an LSTM-based
architecture to detect positive and negative changes in the dri-
vers’ behaviors. Different from the above works in (i) and (ii), our
RM-Drive advances from two major perspectives: (a) extracting
complex spatio-temporal and contextual features from the drivers’
trajectories based on a novel ST-IRL design; and (b) developing a
multi-resolution model to capture the complex DMFs.

7 CONCLUSION
In this work, we propose RM-Drive, a novel framework that ex-
tracts DMFs using spatio-temporal inverse reinforcement learning
(ST-IRL). We have designed multi-resolution trajectory embedding
network (MTE-Net) that integrates multi-resolution convolutional
neural network (MR-CNN) to learn more distinctive DMFs. In ad-
dition, our framework takes the correlation between contextual
factors (i.e., weather conditions and POIs) and driver’s decision-
making behavior patterns into account to enhance the prediction
accuracy. Our extensive experimental studies on two large-scale
real-world datasets confirm the accuracy, efficiency, and applicabil-
ity of RM-Drive for DMF identification.
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APPENDIX
A DETAILS OF DATASETS
(a) Driver TrajectoryDatasets:We use two datasets for our RM-Drive’s
development and experimental studies. In particular, we have:
• Dataset 1 (𝐷𝑆1): The first dataset is collected in the city of Porto,
Portugal, from 2014 to 2015 that contains 1,710,670 GPS trajectories
of 442 taxis with a GPS sampling rate of 1/15 Hz. We select 100
drivers and study their total 29,353 trajectories (with an average of
29 GPS points per trajectory) over a one-month period6.
• Dataset 2 (𝐷𝑆2): The second dataset that we used for our experi-
ments is collected in Rome, Italy in February 20147. This dataset
contains 58,589 GPS trajectories of 320 taxi cabs over a period of 30
days with a GPS sampling rate of 1/7 Hz. We perform data analytics
on 26,278 trajectories (on average 161 GPS points per trajectory) of
100 selected drivers from this dataset.
(b) Contextual Factors: As a contextual factor, we can refer to the
existence of various types and numbers of POIs at different locations.
Moreover, some drivers might prefer to drive near shopping malls,
while others might avoid it due to possible traffic congestion. To
capture such decision-making behavior patterns, we create different
categories of POIs, including but not limited to food (including any
food-related buildings like cafes, restaurants, etc.), transportation
(like bus stations, platforms, etc.), health (like hospital, pharmacy,
clinic, etc.), and tourism (like hotel, museum, motel, etc.) in our
studies.

Additionally, we take the weather conditions into account as an
additional contextual factor. In particular, we consider 7 weather
features based on the day that the trajectory has happened. The
selected features are Rain, Shower, Drizzle, Snow, Fog, Wind, and
Temperature.

B DETAILS OF BASELINES
We present the details of the baseline algorithms as follows.

(1) ResNet: We consider a smaller version of the ResNet archi-
tecture [13] consisted of the first two stages followed by the
pooling and fully connected layers.

(2) CNN: We apply a CNN-based model with a network struc-
ture that is similar to the complex component of the MR-CNN
module.

(3) LSTM/BLSTM:We leverage Long Short-termMemory (LSTM)
or bidirectional LSTM (BLSTM [10]) network as the encoder
module while the other modules remain the same as the
ST-SiameseNet [25].

(4) SRNN: We adopt two stacked RNN layers [7] for driver
classification and anomaly detection by taking the sequences
of trajectories as inputs.

(5) FC: We leverage the CNN-based auto-encoder followed by
fully connected layers (FC) for driver classification and anom-
aly detection.

(6) GBDT: Gradient Boosting Decision Tree (GBDT) [28] is a
decision tree with gradient boosting technique that enhances
classification and detection.

6https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-
+Prediction+Challenge,+ECML+PKDD+2015
7https://crawdad.org/roma/taxi/20140717/

(7) RF: Random Forest (RF) [5] is another statistical learning
method for driver classification and anomaly detection.

(8) SVM: We adopt support vector machine (SVM) [24], a su-
pervised statistical learning method for driver classification
and anomaly detection.

The input to the traditional machine learning models (i.e., GBDT,
RF, and SVM) is flattened input mobility fingerprint tensor that is
not of the finest granularity (i.e., 50 × 50) as these models could not
handle the high dimensional data in a reasonable amount of time.

C DETAILED EXPERIMENTAL SETTINGS
For all the schemes including RM-Drive and baselines, we set 𝑇 to
be 24, which means that each day is divided into one-hour intervals.
Also, a month of trajectory data is selected from each dataset, and
the first 25 days of each month is used for training-phase (Ltrain),
and the rest are used for testing-phase (Ltest). Note that for future
predictions beyond the Ltest, new historical data can be added to
the previous data to easily update the features according to the new
days.

We selected D = 100 drivers from each dataset to perform our
experiments. In particular, on each trial for anomaly detection, we
use 9,000 and 1,650 pairs of trajectories as the testing set and the
training set, respectively, where the number of anomalies and nor-
mal samples are equal. To create an anomaly sample, we randomly
select two trajectories from two different drivers. On the other hand,
to create a normal sample, we randomly select two trajectories from
the same driver. We note that at testing-phase, each pair contains a
new unseen trajectory and a randomly selected trajectory from the
historical data that can belong to the same driver or a different one
to create normal and anomaly test samples respectively. For driver
classification, after removing the trajectories of 𝐷𝑆1 with less than
10 points, it contains 10,953 and 4,779 trajectories in the 𝐿train and
the 𝐿test days respectively. Similarly, 𝐷𝑆2 contains 16,837 and 6,716
trajectories in the 𝐿train and the 𝐿test days respectively after pre-
processing. Finally, to extract driver mobility features with ST-IRL,
the training set for each driver is equal to her/his trajectories used
for driver classification.

The parameter setting of RM-Drive is given as follows. As men-
tioned earlier, we define three resolutions to extract the features. We
determine the highest resolution empirically, and the next two reso-
lutions are then set accordingly.H1 ×W1,H2 ×W2, andH3 ×W3
are set to 50 × 50, 25 × 25, and 15 × 15, respectively. Furthermore,
the kernels of the complex, intermediary, and simple components
of MR-CNN are set to 3 × 3, 5 × 5, and 7 × 7 for all the resolutions.
As stated earlier, MR-CNN does not use any pooling layers as we
observed that these layers do not help improve the performance.
It is mainly because the simple pooling approaches might remove
some essential structural and latent features across different resolu-
tions of the input mobility fingerprints, while our multi-resolution
approach helps preserve these features and hence improves the
performance.

Also, we set 𝛼 = 𝛽 = 1 in Eq. (15). In the training-phase of all
the models, we use the Adam Optimizer [12] with a learning rate
of 0.0001. Furthermore, we set the batch-size and the dropout rate
to 128 and 60%, respectively. For the neural network in the ST-IRL
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Figure 19: Examples of POI base-maps for transportation, and
health categories in the city of Porto, Portugal (𝐷𝑆1).
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Figure 20: Recovered reward&policy base-maps of five drivers from
𝐷𝑆1 with 50 × 50 resolution at 18:00 – 19:00 time interval.
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Figure 21: Stay-duration and two POI category trajectory heat-maps
of five drivers from dataset 𝐷𝑆1.
module, we set the learning rate and the number of iterations to
0.05 and 4, respectively.

With the above settings, it takes about 30 seconds to recover the
reward and policy base maps for each driver per a time interval
(on our machine with Core i7 CPU and RTX2060 GPU). After the
feature extraction, the core model takes about 30 minutes per task
(i.e., classification and anomaly detection) to converge on the same
computing device. Further efficiency enhancement can be achieved
through parallel feature extraction for the drivers and adoption of
high-performance computing infrastructures.

We set the parameters of the baselines as below. For FC, we build
an auto-encoder network consisting of three consecutive CNN
layers with 3 × 3, 5 × 5, and 7 × 7 kernels and 64 filters followed
by three CNN-transpose layers with 7 × 7, 5 × 5, 3 × 3 kernels, and
64 filters except for the last layer, which has (Z + 3) filters. The
output of the last CNN layer is then fed to a four-layer FC. For SVM,
we use Radial Basis Function as the kernel. We set the maximum
depth as 50 and the number of estimators as 100 in both RF and
GBDT. For all LSTM, BLSTM, and SRNN, we use two layers with
256 neurons. Finally, for CNN, we use a network structure similar
to the complex component of MR-CNN.

D VISUALIZATION
In this study, we created Z = 11 categories of POIs, and further
illustrate examples of two POI base-maps showing the density

of each category in Fig. 19. We further show reward and policy
base-maps with an additional resolution (i.e., 50 × 50) from the
same five drivers stated earlier in Fig. 20. Besides, Fig. 21 shows
additional trajectory heat-maps of the stated drivers. Furthermore,
if we compare the trajectories of the drivers, we will notice partial
similarities regarding their shape and location, and if we solely
rely on simple features, the model may not be able to classify them
correctly. However, the difference in the reward, policy, and POI
heat-maps of the trajectories implies that the extracted DMFs of the
drivers are distinct and can further assist the model in identifying
the drivers.

E DEPLOYMENT DISCUSSION
• Extension to Other Driver Datasets: Despite the current focus
on historical driver trajectories, our RM-Drive framework is gen-
eral enough to be integrated with other data sources or features,
including the ones extracted from the Controller Area Network
(CAN-bus) [11, 17] or from other sensors available upon advanced
driver-assistance systems (ADAS), the drivers’ smartphones, or
wearable devices (e.g., accelerometer and gyroscope) [28] for further
accuracy enhancement, or more fine-grained anomaly detection
(e.g., driving under the influence).
• Data Privacy: The datasets used in this research were anonymized,
and no personal information is linked to the GPS records other
than a random identifier for each driver. Moreover, the datasets are
sanitized and made publicly available, which should address any
concerns about the privacy of the drivers. In our research, we aimed
to learn driver’s data for classification and anomaly detection, and
no attempt has been made to find the true identity of the drivers.
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