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Abstract—After years of development, bike sharing has been
one of the major choices of transportation for urban residents
worldwide. However, efficient use of bike sharing resources is
challenging due to the unbalanced station-level demands and
supplies, which causes the maintenance of the bike sharing sys-
tems painstaking. To achieve system efficiency, efforts have been
made on accurate prediction of bike traffic (demands/pick-ups
and returns/drop-offs). Nonetheless, bike station traffic prediction
is difficult due to the spatio-temporal complexity of bike sharing
systems. Moreover, such level of prediction over the entire bike
sharing systems is also challenging due to the large number of
bike stations.

To fill this gap, we propose BikeGAAN, a graph adjacency
attention neural network to predict station-level bike traffic for
entire bike sharing systems. The proposed prediction system
consists of a graph convolutional network with an attention mech-
anism differentiating the spatial correlations between features
of bike stations in the system and a long short-term memory
network capturing temporal correlations. We have conducted
extensive data analysis upon bike usage, weather, points of
interest and event data, and derived the graph representation of
the bike sharing networks. Through experimental study on over
27 millions trips of bike sharing systems of four metropolitan
cities in the U.S., New York City, Chicago, Washington D.C. and
Los Angeles, our network design has shown high accuracy in
predicting the bike station traffic in the cities, outperforming
other baselines and state-of-art models.

Index Terms—bike sharing, pick-up and drop-off, spatio-
temporal, data-driven, station-based traffic prediction, graph
convolutional network, adjacency attention, data analysis

I. INTRODUCTION

Bike sharing has become one of the major mobility options

for urban residents worldwide due to its advantages in conve-

nience and economy over other means of urban transportation.

As a representative product of the sharing economy, it is often

hailed as a good helper to solve the “last-mile” problem in

citizen transportation, enhancing connectivities across various

city zones. Due to the social and business importance, the

global bike sharing market is estimated to hit $5 billion by

20251.

A docked/station-based bike sharing system is usually op-

erated in the way that a user picks up a bike from one station

(demand) and drops it off at another station (return), naturally

forming a bike sharing network, where each node or vertex of

the network represents a bike station. The graph edges can be

1https://www.globenewswire.com/news-release/2019/12/03/1955257/0/en/Bike-
Sharing-Market-is-Predicted-to-Hit-5-Billion-by-2025-P-S-Intelligence.html

Fig. 1: Illustration of bike sharing station networks.

weighted based on the correlations between the stations, which

can be further represented by the weighted adjancy matrix in

the graph theory. Such correlations are usually characterized

by the trips resultant from the stations’ neighboring spatial

and temporal features. A trip from one station to another is

generated mainly because of the riders’ diverse interests or

preferences in the origin and the destination at a certain time

period as shown in Fig. 1. For example, during the rush hours

of a workday morning, people tend to leave their homes for

work places, leading to high bike usage volume at stations

near residential (Station A) and office areas (Stations B, C

and D) of the city. Therefore, the spatio-temporal correlations

between stations are an important aspect to describe the bike

usage behavior. However, the correlations between stations can

be highly complex due to the neighborhood spatio-temporal

characteristics. It is extremely challenging in identifying and

differentiating the importance of the complex correlations

between stations within the mobility modeling. Furthermore,

accurate prediction with respect to each individual station, is

essential but challenging for rebalancing the demands (pick-

ups) and supplies (drop-offs) at the bike sharing systems,

which is the pressing issue for many city planners.

To address the above concerns and enable the data-driven

rebalancing, in this work we propose a Bike sharing Graph

Adjacency Attention Network called BikeGAAN for station-

based pick-up and drop-off prediction with historical spatial

and temporal traffic features and some external related fac-

tors including weather conditions, weekends/holidays, points
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Fig. 2: System overview and information flow of BikeGAAN.

of interest (POIs) and events. We formulate the differences

between stations’ surrounding POI distributions into station

correlations, represented by the adjacency matrix of the graph

representation of the bike sharing networks, and develop an

adjacency attention mechanism differentiating the importance

of each category of POIs. We incorporate the spatio-temporal

characteristics of the bike sharing networks via fusion of graph

convolutional network (GCN) and long short-term memory

(LSTM), leading to high prediction accuracy.

Specifically, our main contributions are as follows:

1) Comprehensive Bike Data Analysis: To identify the com-

plex correlations between stations, we have conducted a

comprehensive and detailed real-world data analysis on

how the weather conditions, events, weekends/holidays,

station locations and surrounding POIs impact the bike

usage in four metropolitan cities of New York City (NYC)

NY, Chicago IL, Washington D.C. (DC) and Los Angeles

(LA) CA, and visualized them to validate our model

design insights.

2) Station Correlation Attention Model: To better differen-

tiate the correlations across stations, we propose a novel

adjacency matrix attention mechanism for the graph con-

volutional network (GCN) which flexbily determines the

contributions of different spatial characteristics upon the

spatial correlations between bike stations. We study and

design the station graph adjacency based on the stations’

neighborhood features in terms of POI distributions. The

proposed model accurately predicts the station-level bike

usage (pick-ups and drop-offs) of a large number of

stations.

3) Extensive Experimental Studies: We have conducted ex-

tensive experimental studies upon over 27 millions trips

in total from totally 1,122 stations of the four metropoli-

tan bike sharing systems in the U.S.: Citi Bike in NYC,

Divvy in Chicago, Capital Bikeshare in DC, and Metro

Bike in LA. The experimental studies have shown that our

model outperforms the baselines and state-of-art models

in multi-station prediction.

Our proposed system provides the accurate prediction re-

sults for bike sharing system operators to efficiently rebalance

their bike distributions, and can be further integrated with

mobile apps or interactive bike websites (say, like Citi Bike

Station Map2) to inform the citizens regarding predicted bike

2https://member.citibikenyc.com/map/

availability in the next few hours/minutes to better plan their

rides.

We further overview the system framework of BikeGAAN
in Fig. 2. The graph representation of the bike stations is

first constructed based on the spatial features (say, POIs

distributions) around stations. An adjacency attention mech-

anism further captures the correlations between stations and

differentiates the importance of each category of POIs. The

graph convolutional network takes in the historical bike usage

data and nearby events around stations as inputs, and the long

short-term memory network further learns the temporal char-

acteristics of the bike sharing networks with the aid of external

features including weather and weekends/holidays. While our

work focuses upon the bike sharing system studies, our model

designs including the adjacency attention mechanism and POI

differences can be easily extended to other domains in the

smart cities and transportation problems, including ride sharing

[1] and crowd flow prediction [2].

The rest of the paper is organized as follows. We first review

the related work in Section II. After that, we present the data

analysis in Section III. Given the derived features, we then

present the core model of our approach in Section IV. We

show the performance evaluation in Section V. We discuss

the deployment in Section VI and conclude in Section VII.

II. RELATED WORK

To achieve efficient operation of the bike sharing systems,

efforts have been made on accurate prediction of bike usage.

Based on prediction granularity, there are three categories of

prediction models in current works: city-level, cluster-level,
and station-level prediction [3]. In city-level prediction, the

aim is to predict bike usage for an entire city [4]. Towards finer

prediction granularity, researchers have studied the cluster-
level prediction to predict bike usage for clusters of bike

stations [5]–[7].

While city-level and cluster-level predictions save the com-

putational cost by simplifying the problems, station-level

prediction still benefits the bike sharing system management

the most due to the granularity for each individual station.

However, the station-level prediction is challenging due to

the spatio-temporal characteristics of the bike sharing usage

patterns of a large number of stations in a city. Previous studies

on station-level bike usage prediction have taken into account

the impact of POIs on bike mobility patterns [3], [8]–[11], but

few of them have considered the difference between the impact

of different POI categories. Therefore, in this study we focus

on station-level bike usage prediction, where we formulate

the differences between POIs distributions around stations

into their correlations, represented by the adjacency matrix

of the graph representation of the bike sharing networks, and

develop an attention mechanism on the station correlations.

Attention mechanisms have been widely used to improve

the performance of deep learning models [12]–[20]. Different

from the prior studies of graph attention networks [21]–[24],

based on extensive data analysis, we design a novel graph

adjacency attention mechanism differentiating the complex
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TABLE I: List of symbols and definitions.

Symbols Definitions
N Total number of stations
i, k Indices of the stations
s Number of features for each station
t Index of timestamps
z Features of a station
z Index of station features
j Index of the features
p, d Pick-ups and drop-offs
T , τ Historical and future timestamps
y, ŷ Ground truth and predictions of bike usage
G, V,E Graph, graph nodes and graph edges
e The edge weight of graph G
Glat,Glon Grid dimensions around each station
C The number of POI categories
c Index of POI categories
pi POIs around station i

A, Ã Adjacency matrix and normalized adjacency matrix
D Degree matrix of adjacency matrix
L The number of layers of GCN
l Index of GCN layers
ext, w External features and the number of them
v,W,U,b Trainable parameters
h LSTM hidden state
c LSTM cell state
h Number of hidden units of LSTM
Â, Ã Intermediate and weighted adjacency matrices
ε, α Attention score and attention weight

TABLE II: Summary of datasets used for the four cities.

Data Citi Divvy Capital Metro
User trips 20,551,697 3,113,950 3,398,417 290,342
Weather 8,760 8,760 8,760 8,760
POIs 14,615 3,976 13,227 3,323
Events 3,662 10,442 1,588 4,149

station correlations, specifically the POI categories, within bike

sharing networks.

III. BIKE SHARING SYSTEM DATA ANALYSIS

We first overview the datasets in Sec. III-A and then

present the data analysis of the datasets in Sec. III-B. Table I

summarizes the symbols and their definitions presented in this

work.

A. Data Overview

We use four types of datasets in this work: the user trip

data, the weather condition data, POI data and event data.

The number of data points collected for the four cities are

listed in Table II. Details of each dataset are discussed in the

following.

1) User Trip Data: The collected trip data describe every

single trip including the trip’s duration, start/end time,

start/end stations and their longitude/latitude, and user

information. We have collected totally 27,354,406 trips

from the four cities in 2019: 20,551,697 trips from

Citi Bike in NYC, 3,113,950 trips from Divvy Bike in

Chicago, 3,398,417 trips from Capital Bikeshare in DC,

and 290,342 trips from Metro Bike in LA.

2) Weather Condition Data: To characterize the hourly

weather conditions, we select the hourly temperature,
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Fig. 3: Heatmaps of Citi Bike system of NYC on (a) Sunday 01-20-
2019 from 8:00 a.m. to 9:00 a.m.; (b) Monday 01-21-2019 from 8:00
a.m. to 9:00 a.m. The colors of the nodes represent the bike pick-up
volumes of the stations (the warmer colors indicate more demands).

Fig. 4: Hourly bike pick-ups and drop-offs from Monday June 3rd to
Sunday June 9th of a station in NYC (40.751873◦N, 73.977706◦W).

Fig. 5: Weekly overall bike usage as a function of weekly average
temperature.

precipitation and wind speed from open source weather

data API3 for the four cities.

3) POI Data: We have collected totally 35,141 POIs for all

four cities through the OpenStreetMap amenity keys4.

The amenity keys fall into 7 major categories, including

sustenance, education, transportation, financial, health-

care, entertainment arts & culture and others. The major

types contain a total of 107 minor types (the amenity

keys).

4) Event Data: We have collected totally 18,253 events of

all 27 categories such as music, festivals, etc. in 2019

for the four major cities from open datasets5, including

3,662 from NYC, 10,442 from Chicago, 4,149 from LA

and 1,588 from DC. The event data contain the GPS

coordinates of event locations and the starting time of

events.

B. Spatio-Temporal Analysis

Given the above datasets, we present the following insights

regarding effects of weather, POIs, weekends/holidays and

3https://api.weather.com
4https://wiki.openstreetmap.org/wiki/Key:amenity
5https://api.eventful.com/
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Fig. 6: Daily overall bike usage compared with daily average
precipitation and wind speed in February for the four cities.

events upon the station traffic based on the data and visu-

alization.

1) Overview of Spatial and Temporal Traffic: The bike

usage pattern of a sharing system shows a strong spatio-

temporal characteristic as illustrated in Figs. 3 and 4. As

shown in Fig. 3 the stations at the center of Manhattan, NYC

have higher bike demands than the rest of the city, while the

bike demands of the whole system on the Monday morning

is much higher than that on Sunday morning. The temporal

characteristic is illustrated in Fig. 4, from which we can see

that the temporal pattern of bike usage is different between

workdays and weekends. Therefore, in this work we consider

such spatial and temporal characteristics in our model design.

2) Station Traffic and Weather: The bike usage is highly

correlated with weather conditions. The three dominating

effects are temperature, precipitation and wind speed. Fig. 5

shows the relationship between the hourly user trip volume of

the entire city and temperature for the four cities. While the

temperature’s impact on hourly bike usage is not significant for

a short-term period, its long-term influence cannot be ignored.

Fig. 6 further presents the correlations between pickups and

the precipitation and wind speed. In general, precipitation and

wind speed negatively impact the number of bike usage. A

notable decrease in bike usage will happen when precipitation

or high wind speed occurs. Given above, we take these three

factors into account and feed them to the deep learning model

as the external features.

3) Station Traffic and POIs: As discussed in Sec. III-B1,

the bike usage of stations is highly location dependent. One

of the major reasons behind this is that different locations

have different distributions of POIs. Fig. 7 illustrates this

clearly where we compare the distributions of two categories

of POIs for the four cities for visualization. For example, the

financial POIs are mainly located at the center of Manhattan,

surrounded by educational facilities. The different distributions

of each type of POIs result in the dependency of bike usage

on locations. Such distribution differences represent the spatial
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Fig. 7: Distributions of different categories of POIs in the four
major cities. Only two types of POIs are shown here for a clearer
visualization.
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Fig. 8: POI vectors (normalized) at five stations in NYC.

Fig. 9: Averaged hourly pickups of the whole sharing systems on
workdays (the week before July 4th, 2019), holidays (July 4th, 2019),
and weekends (the weekends after July 4th, 2019) for the four cities.

correlations between stations. It should be noted that those

correlations are not static and may change with time. In addi-

tion, different categories of POIs have different contributions

to the station correlations. Therefore, we take into account the

distributions of the POIs within a Glat × Glon meters grid of

each station as input features, and the dynamic of the POIs

correlations and the differences in the significance of each

POIs type are included in our model design.

To further characterize the neighborhood environment, we

form a POI vector for each bike station. Specifically, we denote
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Fig. 10: The correlation of several categories of events to the bike
usage of NYC.

the numbers of C different POI categories in a Glat×Glon grid

centered at station i as a vector pi. The c-th element of the

vector, pi[c], is the number of POIs for category c in the grid

area for station i. We further show in Fig. 8 the various POI

vectors (normalized POI number with respect to each category)

of five bike stations with the highest bike usage in NYC. We

can observe diverse POI numbers for these stations, and our

formulation in BikeGAAN will incorporate such features.

4) Station Traffic and Weekends/Holidays: As shown in

Fig. 9, the bike usage for a station on a workday has a

different mobility pattern from that on weekends/federal holi-

days. Therefore, we consider weekends/federal holidays as an

external factor. Specifically, we set an indicator as 1 if the

usage time is on weekends/holidays and 0 otherwise.

5) Station Traffic and Events: Event is another important

contribution to the bike usage in the systems [25]. To analyze

the influence of the occurrence of different types of events on

the station bike usage, we calculate the hourly frequency of

each type of event around each station within 2019. Consid-

ering each station as the center, we find a square grid with

a side length of 500 meters for each station. Then we find

the number of events in different categories within the grid to

evaluate their influences upon the bike usage.

Specifically, we find the average hourly bike usage within a

range from one hour before to one hour after a certain category

of event (say, gallery), and those bike usage in the same hours

of a day without that event. We respectively aggregate these

two kinds of usage, and find their ratios afterwards as their

impact factors. Fig. 10 shows the mean impact factors as well

as their standard deviations of 12 different categories of events

on the bike usage of NYC. Clearly, the larger impact factors

indicate more bike usage given the events nearby, and we can

observe that gallery, conference and movie are the three most

influential events. In this work we take into account the events

as additional features for the stations.

In summary, based on the analysis above, besides the bike

usage we use nearby POIs and events as the features of each

bike station. Weather conditions including temperature, wind

speed and precipitation, as well as weekends/holidays or not

are used as the external features. As an example, for the time

interval of [0:00 a.m., 1:00 a.m.], 2019-01-01, the external

vector is given by [47 °F, 1.5 mph, 0.08 in, 1] (1 for holiday).

Fig. 11: Illustration of model designs for BikeGAAN at the last
timestamp where the cell output is connected to a fully-connected
(FC) layer to generate prediction. There are no such FC layers for
the previous timestamps.

Fig. 12: Illustration of adjacency matrices (after min-max normaliza-
tion) at initial timestamp for the four bike sharing networks.

IV. BikeGAAN: GRAPH ADJACENCY ATTENTION FOR

BIKE STATION TRAFFIC PREDICTION

Given the above data analysis, we first describe definitions

of the problem we study in Sec. IV-A, and then give detailed

descriptions about BikeGAAN design in Sec. IV-B.

A. Problem Definition

We consider that for N stations in a city, each station i has

s features at timestamp t:

zi,t = (zi1,t, ..., zij,t, ..., zis,t), (1)

where i ∈ [1, ..., N ] and j ∈ [1, ..., s]. Let the first two features,

z
(p)
i1,t and z

(d)
i2,t, be the bike usage (pick-ups and drop-offs) of

station i at time t, while the rest of the features be the number
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of events around stations. The problem of this work is defined

as: given the features of each station of previous T timestamps,

ZT = (z1,T , . . . , zi,T , . . . , zN,T ), i ∈ [1, ..., N ] , (2)

we aim at predicting the bike usage, ŷ
(p)
i,τ and ŷ

(d)
i,τ for i ∈

[1, ..., N ], at the next τ timestamps in the bike sharing system.

To approach the above problem, we have BikeGAAN,

a data-driven bike usage prediction system, and the core

structure is shown in Fig. 11. The details of each component

will be discussed in the following sections.

B. Detailed Formulations in BikeGAAN
We further present the detailed designs in BikeGAAN in-

cluding graph generation, graph convolutional networks, long

short-term memory and adjacency attention.

1) Graph Generation: A bike sharing network can be

encoded in a graph G(V,E) where each node denotes each

bike station and the weight of each edge denotes the cor-

relation between any two stations. We note that the designs

of the correlations, characterized by the weighted adjacency

matrix, are particularly important for the prediction via graph

convolutional networks. The mobility trends of bike usage can

be described by the dynamic difference in the POIs between

stations, and hence we define the weight of the edge between

any two stations as the weighted Euclidean distance between

the different numbers of POIs in their surrounding areas.

Recall that we form the POI vector at each station i as pi.

Then we design the weight of the edge between stations i and

k, ei,k, at the initial timestamp as

ei,k =

√√√√ C∑
c=1

(pi[c]− pk[c])
2
. (3)

Then we form the weighted adjacency matrix between the

stations as A, and A[i, k] = A[k, i] = ei,k.

From previous study [26], we notice that most of the bike

trips cover geo-distances over 500 meters, meaning that there

is limited bike communication between two close stations that

have similar POI distributions, and this is explicitly expressed

by Eq. (3). Note that in this study we consider the station

correlations as the mobility trends of bike usage, so larger POI

differences result in higher mobility trends and hence stronger

correlations. The adjacency matrices for the four bike sharing

networks are visualized in Fig. 12.

2) Graph Convolutional Networks (GCN): Given the graph,

G, constructed in the way described in the previous section,

we adopt GCN [27] to capture the spatial correlations between

stations. Specifically, the adjacency matrix A is first normal-

ized into Ã, i.e.,
Ã = D− 1

2AD
1
2 , (4)

where D is degree matrix of A. The convolutional operation

at each level is then given by

Hl = ÃHl−1WG,l−1, (5)

where Hl−1 ∈ R
N×sl−1 and Hl ∈ R

N×sl are projected

features at the (l − 1)-th and l-th layers, l ∈ [1, L], and

WG,l−1 ∈ R
sl−1×sl is a learnable parameter with sl being

the dimension of projected features at layer l. The input of

the first layer is the original input signal at timestamp t, i.e.,

H1 = Zt ∈ R
N×s. (6)

3) Long Short-Term Memory (LSTM): The GCN output,

HL ∈ R
N×sL , is flattened, and the flattened tensor H̄L is

concatenated with external features, ext ∈ R
w, including

weather and weekends/holidays, and fed into the LSTM mod-

ule. Specifically, an LSTM cell at timestamp t [28] is formally

given by

mt = σ
(
Wm

[
ht−1, H̄L, ext

]
+ bm

)
,

nt = σ
(
Wn

[
ht−1, H̄L, ext

]
+ bn

)
,

ot = σ
(
Wo

[
ht−1, H̄L, ext

]
+ bo

)
,

c̃t = tanh
(
Wm

[
ht−1, H̄L, ext

]
+ bm

)
,

ct = (ft ∗ ct−1 + it ∗ c̃t) ,
ht = tanh (ct) ∗ ot,

(7)

where ht, ct ∈ R
h are the LSTM’s hidden state and cell state

respectively with h being the number of hidden layers, W ∈
R

h×(h+N ·sL+w) and b ∈ R
h are learnable parameters, and

the rest are intermediate variables.

A fully connected layer takes the last hidden state of LSTM
cell to generate predictions of bike pick-ups and drop-offs

simultaneously. The previous hidden state of the LSTM, ht−1,

is utilized to incorporate the dynamics of POI correlations at

current timestamp t, which is represented by the adjacency

attention as formulated in the following section.

4) Adjacency Attention Design: Following the manner of

graph generation described previously, the spatial correlations

of the bike sharing network is encoded in the graph G.

However, defining graph edges as Euclidean distance between

stations’ surrounding POI numbers is an under-estimation, as

the contributions of different POI categories to the network’s

spatial correlations could be different and vary with time. For

example, during rush hours of a workday, stations around

business areas are more active than stations near entertainment

facilities. Therefore, we design an attention mechanism on the

adjacency matrix A to capture and differentiate the varied

contributions of each POI category.

Specifically, given the graph G, each entry of the adjacency

matrix A ∈ R
N×N at the initial timestamp is a Euclidean

distance of POI vectors for a station pair. A can be generated

by calculating the Euclidean distance between POI vectors for

every pair of stations. This is equivalent to first calculating the

squared number difference for each POI category from which

we get an intermediate matrix Â ∈ R
C×N×N , and then we

calculate the square root of the summation of all the entries of

Â along the first axis. Specifically, an entry of the intermediate

matrix, Â, for station i and k at the c-th POI type is given by

Âc[i, k] = Âc[k, i] = (pi[c]− pk[c])
2
. (8)

The attention score for POI category c at time t is calculated

by

εct = v · tanh
([

VÂcu,Uht−1

]ᵀ)
, (9)

where v ∈ R
v+u, u ∈ R

N , V ∈ R
v×N and U ∈ R

u×h
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are learnable model parameters; u, v are adjustable attention

parameters; Âc ∈ R
N×N is the corresponding intermediate

matrix for POI category c; [•, •] is the concatenation operation.

Then the attention weight of this category is given by a

softmax function for the score of this category, i.e.,

αc
t =

exp (εct)∑C
c=1 exp (ε

c
t)
. (10)

This way, the spatial correlation (adjacency matrix) attention

captures the dynamic contribution of different POI categories

at each timestamp. The weighted adjacency matrix Ãt ∈
R

N×N at timestamp t is then computed by

Ãt =

√
α1
t Â1 + ...+ αc

tÂc + ...+ αC
t ÂC , (11)

which is the updated adjacency matrix at that timestamp fed

to the GCN following the same manner as Sec. IV-B2.

V. EXPERIMENTAL STUDIES

In this section, we first present the evaluation setup in Sec.

V-A , followed by the experimental results in Sec. V-B.

A. Evaluation Setup

We compare BikeGAAN with the following baselines and

state-of-art models for our experimental evaluation:

• HA: In Historical Average (HA) [29] we calculate the

future usage based on all historical data at the same point

of time.

• ARIMA: Auto Regressive Integrated Moving Average

(ARIMA) is a statistical regression model for time series

forecasting.

• SES: Simple Exponential Smoothing (SES) uses a

weighted moving average which assigns exponentially

decreasing weights for observations from newest to older.

• MLP: In Multi-layer Perceptron (MLP) we leverage the

historical data to predict the usage of future timestamps.

• RNN: Recurrent Neural Network (RNN) [30] is a classic

deep learning model for time series prediction.

• LSTM: Long Short-Term Memory (LSTM) neural network

[28] is a variant of the recurrent neural network with

inclusion of information gates.

• GRU: Gated Recurrent Units (GRU) [31] is another variant

of the recurrent neural network with a different structure

of information control.

• CNN: Convolutional Neural Network (CNN) leverages the

bike usage of the past to give predictions of the future

timestamp.

• CNN-LSTM/CNN-GRU/CNN-RNN: The CNN is combined

with LSTM/GRU/RNN to predict future bike usage.

• GCN: The Graph Convolutional Network (GCN) devel-

oped by [10] predicts the time-series data where the

adjacency matrix is treated as an adjustable parameter.

We evaluate the BikeGAAN and related schemes with the

datasets presented in Sec. III-A. For all schemes, we leverage

the bike usage data of the past 24 hours to predict the bike

usage in the next following hour for the stations in the sharing

networks we study. We first go through all the trip data for each

city and identify the stations which have bike usage everyday

TABLE III: Comparison between BikeGAAN and baselines for the
four bike sharing systems.

Schemes Citi Divvy Capital Metro
SES 43.745 24.456 7.534 1.331
MLP 41.932 14.118 8.663 1.394
ARIMA 39.277 22.041 6.087 1.131
HA 19.630 11.106 3.653 0.759
RNN 16.973 7.580 3.070 0.797
GRU 16.148 7.299 3.258 0.785
LSTM 18.912 7.023 3.310 0.768
CNN 14.766 9.228 3.684 0.742
CNN-RNN 23.297 6.128 3.062 0.748
CNN-LSTM 30.898 6.329 3.245 0.783
CNN-GRU 23.049 6.315 3.267 0.754
GCN 12.271 6.550 3.065 0.736

BikeGAAN 10.146 5.652 2.775 0.701

and have not been relocated or removed. Other stations are

not of our interest in this study. We find in 2019 totally 575

stations in NYC from January to June, 234 stations in Chicago

and 270 stations in DC from April to June, and 43 stations in

downtown LA in June. We use the user trip data during the

above time periods for training, and evaluate the schemes on

the data from July 1st to September 18th (80 days in total) for

NYC, Chicago and DC and those from July 1st to July 16th

(16 days) for LA.

We set the grid area Glat × Glon around each station to

be 500m×500m, and count the POI distributions and nearby

events. The bike usage of the network is combined with events

to form the GCN inputs, such that for Zt ∈ R
N×s and s =

3, with the first two channels being bike pick-ups and drop-

offs and the last channel being stations’ nearby events of all

categories.

The number of projection layers of GCN in BikeGAAN is set

to be two with the projected dimensions of each station being

s1 = 1 and s2 = 1. We set the number of hidden layers of

LSTM, h, as 256 for NYC, 128 for both Chicago and DC, and

16 for LA. The drop-out rate of LSTM cell is 0.5. BikeGAAN
is trained with a learning rate of 0.001 and a batch size of 64

by Adam optimizer for 6,000 iterations for Citi Bike (NYC)

and 5,000 iterations for others. All experimental evaluations

are conducted upon a desktop with Intel i5-8700, 16GB RAM,

Nvidia GeForce RTX2080Ti/GTX1060 and Windows 10.

We use the mean square error (MSE) as the comparison

metric:

MSE =
1

2Nτ

∑
q∈[p,d]

N∑
i=0

∑
t∈τ

(
ŷ
(q)
i,t − z

(q)
i1,t

)2

. (12)

The models are trained and tested based on MSE. The training

losses of BikeGAAN are shown in Fig. 13.
B. Evaluation Results

1) Model Performance: We first show the prediction accu-

racy of bike usage of the four bike sharing systems in Table III.

From the table we can see that BikeGAAN has overall better

performance than other baselines and state-of-art models,

which demonstrates the effectiveness of the proposed repre-

sentation of bike sharing networks. The BikeGAAN model

captures the generation of bike usage as people’s preference

of travelling to a neighborhood with different points of their
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interest from the original places. Conventional models like

HA, ARIMA, RNN, GRU and LSTM can only capture temporal

characteristics of bike usage, while GCN mainly learns spatial

correlations, so those models cannot achieve high accuracy.

The CNN only encodes the bike usage sequence rather than

geographic information, and hence CNN and its combinations

with the RNN, GRU and LSTM fail to capture the spatial cor-

relations between stations and cannot provide high prediction

accuracy. BikeGAAN, however, outperforms them in terms of

MSE due to its comprehensive structure in capturing the bike

flow dynamics.

Table III shows that there is a great difference in model

performance between different cities. This is because of the

large difference in the total number of bike usage between the

four cities as described in III-A, where NYC has the most bike

trips, followed by Chicago, DC and LA. For a city with more

bike usage, the mobility pattern of pick-ups/drop-offs is more

complex, making the predictions of the models less accurate.

The importance of different POIs may vary across different

cities due to different functional zones of the cities. We

further illustrate the weights of adjacency attention in Fig.

14 with respect to the seven POI categories. For each city,

we normalize the attention weights, and present the stacked

bar, where larger proportion represents more importance in the

model learning. From experimental study, we notice that the

softmax function in Eq. (10) eliminates the time dependency

of the attention scores. Therefore, the attention weights for

each city keep the same with varied time periods.

From Fig. 14 we can see that in NYC and Chicago health-

care POIs have the largest contribution to the station correla-

tions, probably because in these two cities the healthcare POIs

are mainly located near residential areas, leading to a large POI

difference between business center/workplaces and residential

areas. We consider that commute is one of the major reasons

for traveling of urban residents. For DC the transportation

POIs and POIs such as marketplaces, childcare and post offices

(denoted as “other”), have the most contributions to the station

correlations. This is because of the special functionality of

DC where the government facilities/workplaces are located

in the center of the city where there are limited numbers

of transportation and “other” facilities such as parking lots,

gas stations and marketplaces. For LA the entertainment

POIs play an important part in the station correlations along

with education and transportation POIs. A large number of

attractions around LA may lead to different mobility trends

from the other three cities.

2) Visualization: Fig. 15 shows bike usage as well as

BikeGAAN’s predictions of two stations from NYC and DC

during July 1st to July 7th. We note that the Independence

Day (the 4th of July) is on Thursday, and the bike usage on

the following Friday and even on Wednesday follows the same

pattern as the holiday, indicating that people are taking those

two workdays off. BikeGAAN takes into account this factor

(as in Sec. III-B4) and hence achieves accurate predictions.

The highly accurate predictions can benefit the bike sharing

system operation such as bike re-balancing.

Fig. 13: Training losses (MSE) of BikeGAAN for the four systems.

Fig. 14: Adjacency attention weights for the four systems.

(a) A station at NYC (40.751873◦N, 73.977706◦W).

(b) A station at DC (38.89696◦N, 77.00493◦W).

Fig. 15: Hourly bike usage prediction from July 1st to July 7th for a
station at (a) Citi Bike and (b) Capital Bikeshare, respectively.

VI. SYSTEM DEPLOYMENT DISCUSSION

We briefly discuss some system deployment discussions

related to BikeGAAN.

1) Bike sharing network redeployment: In this work, only

stations that have not been removed or relocated are studied.

However, bike sharing networks usually change with resident’s

evolving demand. Bike stations might be reconfigured [32]

and the systems might be expanded [26], [33]–[35]. Further

exploration on how to encode such dynamics of the systems

into the network structure will be considered in our future
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work.
2) Incorporating transportation networks: The bike sharing

system along with other means of transportation such as bus,

subway, ride sharing, etc. form a transportation network of

a city [36]. There exist traffic correlations between these

transportation systems. Therefore, incorporating such corre-

lations may help improve not only the accuracy of bike usage

station, but also the efficiency of urban transportation for city

management, which will be considered in our future work.

VII. CONCLUSION

In this work, we develop BikeGAAN with a novel rep-

resentation of bike sharing networks and adjacency attention

mechanism to predict the bike usage (pick-ups/drop-offs). We

have conducted comprehensive and detailed analysis on real-

world datasets of four major cities in the U.S., NYC, Chicago,

DC and LA, and demonstrated how the weather conditions,

station locations and surrounding POIs, weekends/holidays

and events impact the bike usage. We leverage the nearby POI

distributions between stations as their spatial correlations. The

adjacency attention mechanism captures and differentiates the

contributions of each POI category to the spatial correlations

between stations. We have conducted extensive experimental

study of our model on real-world datasets of the four cities.

The results show that BikeGAAN outperforms other baselines

and state-of-the-art models in predictions of bike usage for the

entire systems.
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