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ABSTRACT
Thanks to recent progresses in mobile payment, IoT, electric motors,
batteries and location-based services, Dockless E-scooter Sharing
(DES) has become a popular means of last-mile commute for a
growing number of (smart) cities. As e-scooters are getting deployed
dynamically and flexibly across city regions that expand and/or
shrink, with subsequent social, commercial and environmental
evaluation, accurate prediction of the distribution of e-scooters
given reconfigured regions becomes essential for the city planners
and service providers.

To meet this need, we propose GCScoot, a novel dynamic flow
distribution prediction for reconfiguring urban DES systems. Based
on the real-world datasets with reconfiguration, we analyze the
mobility features of the e-scooter distribution and flow dynamics
for the data-driven designs. To adapt to dynamic reconfiguration of
DES deployment, we propose a novel spatio-temporal graph cap-
sule neural network within GCScoot to predict the future dockless
e-scooter flows given the reconfigured regions. GCScoot prepro-
cesses the historical spatial e-scooter distributions into flow graph
structures, where discretized city regions are considered as nodes
and their mutual flows as edges. Given data-driven designs re-
garding distance, ride flows and region connectivity, the dynamic
region-to-region correlations embedded within the temporal flow
graphs are captured through the graph capsule neural network
which accurately predicts the DES flows. We have conducted exten-
sive empirical studies upon three different e-scooter datasets (>2.8
million rides in total) in populous US cities including Austin TX,
Louisville KY and Minneapolis MN. The evaluation results have cor-
roborated the accuracy and effectiveness of GCScoot in predicting
dynamic distribution of dockless e-scooters’ mobility.
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1 INTRODUCTION
Powered by the rapid growth of on-demand and sharing economy,
dockless electric-scooter sharing (DES) systems have been prolifer-
ating in many metropolitan areas worldwide. As illustrated in Fig. 1,
built upon mobile payment, Internet-of-Things (IoTs) and location-
based services, DES does not, in general, require fixed docking
stations for users to receive or return the e-scooters. With motor-
ized and dockless features, DES provides another faster and easier
first/last-mile connectivity of the city [4, 32] beyond conventional
bike sharing.

Due to the increasing commercial potential (DES platforms like
Bird and Lime have raised USD$1.48 billion by April 2019 [4]) and
growing social acceptance, many city planners as well as service
providers are considering expanding their deployment coverage. For
example, the expansion program in Washington D.C. is expected to
increase 50% of the e-scooter deployment in 2019 [1]. On the other
hand, e-scooter geofences may shrink in some regions of the city
given new administrative decisions. Such expansion and shrinkage,
or reconfiguration as shown in Fig. 1, is done region-by-region fol-
lowed by official evaluations (say, public hearings and user survey).
Therefore, how to accurately forecast the e-scooter distributions
in to-be-reconfigured regions is essential for the predictive and
precautionary decisions of city planners and DES service providers.

Such a proactive and accurate forecast also provides the initial
clues of selecting regions to enhance expected platform revenues
and mitigate potential alternation of local traffic environments.
Public expenditure due to labor-intensive site surveys can be re-
duced/eliminated. Furthermore, accurate knowledge of e-scooter
proliferation helps balance the demands and supplies of the e-
scooters, and prevent under-served customers and over-congested
side walks due to excessive parking, which has become substantial
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impediments to commercial profitability and social welfare of many
DES systems and their communities.

Despite the progresses made in existing DES deployment, there
still remain several technical challenges and concerns before a sat-
isfactory reconfiguration decision can be made. Due to sparsity
and scarcity, or even absence, of initial trials in newly-expanded re-
gions, future e-scooter distributions may not be simply modeled by
existing time-series prediction based on historical records. Further-
more, due to its dockless, easy-maneuvering and last-mile nature,
e-scooters traveling across city regions form complex mutual depen-
dencies, commute connectivities and mobility correlations, making
it even more difficult to predict post reconfiguration effects. In-
troducing or removing certain deployment regions may lead to
sophisticated effects upon the mobility patterns of neighborhoods.
Finally, few studies have conducted data analytics on the spatial
and temporal distributions of existing metropolitan DES systems.
Designs of models/components largely rely upon the deployment
insights, which are essential for a data-driven model study.

To address the above concerns, we propose GCScoot, a novel dy-
namic e-scooter flow prediction scheme based on spatio-temporal
graph capsule neural network for reconfiguring the urban e-scooter
sharing systems. Specifically, based on the extensive data analytics
upon DES datasets, we identify several design features for the urban
DES systems. Using these results, we design a novel spatio-temporal
graph capsule convolutional neural network, called STGCapNet, for
dynamic flow distribution of urban DES reconfiguration. Taking
into account the reconfigured city regions and their mutual corre-
lations, GCScoot comprehensively captures the dynamic impacts
of reconfigured city regions upon the e-scooter distributions, and
the graph capsule convolution accurately predicts the DES flows.

The contributions of GCScoot are summarized as follows.
• Data-driven analytics and designs for dockless e-scooter recon-
figuration: In order to adapt to expansion dynamics, we have
conducted extensive data-driven studies using the real-world
datasets from the DES systems. We have studied the mobility
features of DES systems given reconfigured deployment, and
provided comprehensive data-driven designs for the following
flow prediction. To the best of our knowledge, this is the first
that investigates, identifies and formulates the dockless e-scooter
sharing flow distribution prediction problem given the reconfig-
ured deployment.

• Spatio-temporal graph capsule neural network for reconfigured
DES distribution forecasting: We propose a data-driven design
for DES distribution prediction based on novel spatio-temporal
graph capsule neural network called STGCapNet. The proposed
multi-scale feature extraction based on multi-layer graph con-
volution comprehensively retrieves the correlations among the
reconfigured regions. By mining the connectivities between the
existing, new and removed regions, STGCapNet learns the re-
configured DES mobility. Further routings between the graph
convolutions and capsules capture the geographical properties
via vectorized representations [31], thus leading to high accuracy
in dynamic flow prediction.

• Extensive data-driven and experimental studies: Based on the
above analytics and network formulation, we have conducted ex-
tensive experimental studies upon 2.8million rides from three dif-
ferent e-scooter datasets in populous US cities including Austin

TX, Louisville KY and Minneapolis MN. Our results have corrob-
orated the accuracy and effectiveness of GCScoot in dynamic
distribution prediction of dockless e-scooter mobility.
The rest of the paper is organized as follows. We first discuss

the related work in Sec. 2, followed by an overview of the concepts,
problem formulation and data sets in Sec. 3. Then, we present in
Sec. 4 the data-driven analytics and designs for DES reconfiguration,
followed by the core dynamic prediction framework in Sec. 5. We
then experimentally evaluate the performance of GCScoot in Sec. 6,
and finally conclude the paper in Sec. 7.

2 RELATEDWORK
We briefly discuss the related work as follows.

Smart transportation: Recent advances of big data and deep learn-
ing have redefined many research problems towards smarter trans-
portation and the resultant sharing economy [38]. Unlike prior
smart and shared mobility studies [11, 36], our work focuses on
rapidly proliferating dockless e-scooter systems, deriving impor-
tant insights and data-driven designs for practical reconfigura-
tion deployment of e-scooters. Despite the prototype studies upon
the e-scooter datasets, GCScoot can be adapted and extended to
other on-demand modalities with reconfigured deployment, in-
cluding e-vehicle station relocation [8], car-sharing [17, 21], and
bike-sharing [15, 18, 19].

Traffic flow prediction: Conventional statistical analysis and ma-
chine learning tools have been used for traffic flow forecast. By
modeling the traffic speed distributions as images, Ma et al. [26] in-
vestigated the application of convolutional neural network. Zhang
et al. [42] proposed the spatio-temporal residual neural network
for bike mobility prediction. With the road network graphs, a deep
learning design for traffic series prediction was discussed by Yu et
al. [40]. For station-based bike sharing, Chai et al. [9] designed a
multi-graph convolutional neural network, which is followed by
Geng et al. [14] upon ride sharing services. Yao et al. [39] and Wang
et al. [35] respectively proposed a new meta-learning approach and
a region transfer method to transfer knowledge frommultiple cities.
With meta-learning, Pan et al. [30] further studied the diversity of
spatial and temporal correlations.

Unlike these studies, GCScoot takes into account the dynamic
reconfiguration of scooter deployment regions, and provides highly
adaptive and accurate flow predictions for e-scooter sharing. We
propose novel data-driven designs for DES systems, and show that
our spatio-temporal graph capsule neural network adapts to the
dynamic reconfiguration. DES service providers can leverage the
adaptability and accuracy of GCScoot predictions for more proac-
tive reconfiguration decisions and evaluations.

Dockless vehicle mobility analytics: Thanks to location sensing
and IoTs, many single-track vehicle sharing systems like bikes and
e-scooters have rendered parking docks obsolete. Pan et al. [28]
studied a reinforcement learning algorithm in order to balance the
dockless bike sharing system. Liu et al. [23] leveraged the factor
analysis and convolutional neural network to transfer the knowl-
edge between two cities, which is further followed by [24] regarding
domain adaptation. Smith et al. [32] studied the mobility benefits
of e-scooter sharing in Chicago.

GCScoot differs from these in the following perspectives. We
focus on the dynamic flow analytics for the emerging dockless
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e-scooter sharing due to its higher mobility and more urban impact
beyond the bike sharing. To address the pressing reconfiguration
concerns of the city planners, we have conducted the pioneering
studies and identified the reconfiguration problems for DES deploy-
ment. Furthermore, through experimental studies upon the three
urban DES datasets, we have shown that the proposed network
within GCScoot outperforms the existing schemes in adapting to
the dynamic city regions through the novel joint graph convolution
and capsule learning.

3 CONCEPTS, PROBLEM FORMULATION &
DATA SETS

Wefirst briefly introduce the important concepts related to GCScoot’s
formulation in Sec. 3.1, and then present the problem formulation
in Sec. 3.2. Finally, we describe the datasets for our data analytics
in Sec. 3.3.

3.1 Important Concepts
Presented below are the definitions of important concepts.

Definition 1 (City Regions & Time Intervals). Following the pre-
vious works [39, 42], the entire map of a city is discretized into a
set of total N regions (say, rectangle grid in our case), yielding a
finite geographical set for computational convenience. Each region
is represented by the coordinate of its center, i.e., rn = [latn , lonn ]
(n ∈ {1, . . . ,N }). Similar to the discretization of city regions, the
time domain is discretized into equal intervals (of 30min in our pro-
totype studies), each of which is labeled with k .

Definition 2 (DES Flow). Each trip represents a user’s scooter
ride at a certain time from a city region to another. Specifically, a set
of trips starting from region i to region j can be represented as τ (i, j) ={
i, j, (ti , tj )

′s
}
, where (ti , tj ) is the pick-up/drop-off timestamps of

each trip in τ (i, j). We further denote the DFS flow at region i in an
interval k as Fi = (Pi ,Di ), where Pi and Di are the respective DES
pick-ups and drop-offs there.

To better characterize the correlations, dependencies and con-
nectivities of different regions in a city, we model the urban DES
systems into a network graph structure. Based on the above regions
and flows, we introduce the DES network graph.

Definition 3 (DES Network Graph). Given T (i, j) trips between
regions i and j (T (i, j) > 0,T (i, j) = T (j, i), and i, j ∈ {1, . . . ,N }), we
form the link or network connectivity of the two regions. Consider-
ing N regions as vertices V and their mutual connectivities (mutual
flows) as edges E = {T (i, j)′s}, ∀i, j ∈ {1, . . . ,N }, we form the DES
network graph as G = (V,E).

In practice, the DES network undergoes dynamic reconfigura-
tion due to evolving user demands, city urbanization and traffic
alternation. Thus we have:

Definition 4 (DES Network Reconfiguration). Given the periodic
alternation (expansion or shrinkage) of DES deployment, we have two
stages before and after each reconfiguration, i.e., two sets of N and
N ′ pick-up/drop-off regions denoted as V and V′, respectively. The
reconfigured regions are, therefore, given by (V ∪ V′) \ (V ∩ V′).

The dynamic mobility of the DES users may lead to variations
in either V or E. To characterize the dynamically evolving DES
networks, we have

Definition 5 (Spatio-Temporal DES Network Graph). At time in-
terval k , given the deployed regions V(k ) with pick-ups/drop-offs and
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Figure 2: Illustration of the system framework in GCScoot.

the mutual flows of the regions E(k), we denote the spatio-temporal

DES network graph at the time interval k as G(k ) =
(
V(k ),E(k )

)
.

Similarly, we denote the DES flows at the region i at the interval k as

F(k)i =
(
P
(k )
i ,D

(k )
i

)
.

3.2 Problem Formulation & System Overview
Based on the concepts introduced above, we formally present the
problem formulation as follows.

Definition 6 (Dynamic Flow Prediction for ReconfiguredDES Sys-
tems). Given the spatio-temporal DES network graphs in the pastw

time intervals, i.e.,
{
G(k−w+1),G(k−w+2), . . . ,G(k)

}
of the scooter

pick-ups and drop-offs, as well as the reconfigured regions V(k+1) at
the target time interval k + 1, we want to proactively predict the dy-
namic flows F(k+1) =

{
F(k+1)i

}
(i ∈ {1, . . . ,N }) in the G(k+1).

Based on the case studies and pilot programs of DES, the recon-
figured regions V(k+1) can be the result of negotiation between the
DES service providers and the city. The information can be collected
through public hearings, site survey and market analysis [41].

In order to solve the above problem, we propose GCScoot, whose
system framework as well as information flow are illustrated in
Fig. 2. Given the deployment trips of the DES system (including
regions before and after the reconfiguration), analytics are con-
ducted to pre-process the data, deriving the spatial and temporal
correlations characterizing the DES deployment.

Specifically, spatial designs like road networks, regional points-
of-interest (POIs) and region-to-region distances are collected. Tem-
poral designs including historical flows and other external factors
(like time and weather) are also retrieved from the DES deploy-
ment. We embed the external factors for the fully connected neural
network to learn the temporal dynamics, while region correlations
including flow, distance and POIs are jointly considered in the graph
capsule neural network. Multi-layer graph convolution and capsule
routing are applied to capture dynamic flow patterns. Predicted
e-scooter flows for the DES reconfiguration via both networks are
merged and returned. Combining the above factors, STGCapNet
learns the correlations between reconfigured regions and provides
accurate hints for the reconfiguration pre-evaluation.

3.3 Data Sets for Analytics & Evaluation
We have conducted our data analytics and experimental evaluation
based on the following three datasets:
• Austin, TX (May, 2018 – January, 2019): In total, 2, 430, 806
DES trips have been recorded, with the pick-up/drop-off coordi-
nates and timestamps, covering the bounding box of [-97.9◦W,
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Figure 3: Dynamic flows of pick-ups/drop-offs of a week (Sunday to Saturday) in the three datasets:
(a) Austin (Aug., 2018); (b) Louisville (Oct., 2018); (c) Minneapolis (Oct., 2018).
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regions in the three datasets.
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Figure 5: Pick-up distributions
in August, 2018 (Austin).
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Figure 6: Pick-up distributions
in October, 2018 (Austin).
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Figure 7: Pick-up distributions
in December, 2018 (Austin).
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-97.58◦W, 30.2◦N, 30.499◦N]. Outliers have been removed when
trip distance falls out of [0.1, 500] miles or a trip lasts for more
than 24 hours.

• Louisville, KY (August, 2018 – May, 2019): The dataset con-
tains in total 193, 937 trips with pick-up/drop-off coordinates and
timestamps, covering a geographic bounding box of [-85.903◦W,
-85.486◦W, 38.081◦N, 38.340◦N]. Outliers have been removed
when trips were less than 0 miles or greater than 25 miles.

• Minneapolis, MN (July, 2018 – November, 2018): This dataset
provides totally 225, 543 trips with pick-up/drop-off coordina-
tions aswell as timestamps, covering a bounding box of [-93.38◦W,
-93.08◦W, 44.89◦N, 45.02◦N]. Outliers have been removed when
trips last for over 7 hours and were less than 0 miles or exceeded
24 miles.

We further show the dynamic flows of the DES pick-ups and drop-
offs of a week in each city in Fig. 3. We can observe more DES flows
(pick-ups/drop-offs) in Austin than the other two cities, as well as
high and dynamic volume of daily rides during weekends. Besides
the above datasets, we also retrieve the city map (street centerlines)
and obtain POI data from the OpenStreet Map [27].

4 DES RECONFIGURATION ANALYTICS
Given the above datasets from the DES systems, we conduct the
reconfiguration analytics upon the DES networks.We first overview
the DES reconfiguration in Sec. 4.1, and then present the data-driven
studies of spatial and temporal factors in Sec. 4.2.

4.1 Overview of Urban DES Reconfiguration
We have conducted the following deployment studies and data
analytics on the DES reconfiguration.

UrbanDESdeployment and reconfiguration: E-scooters and
their sharing economy have recently been shown to be more com-
petitive with the dominant car-commute lifestyle in the United
States than bicycles. Besides high mobility and dockless features,
the sizes of most sharing e-scooters deployed are physically smaller
than conventional shared bicycles, hence easier to maneuver and
less space to park. Let us consider the system records of both dock-
less e-scooter and bike sharing (same period) in Austin, TX as
examples. Due to faster speed (up to 15 mph) and easier maneuver-
ing, the DES systems enjoy an 83.87% shorter trip time duration
and 33.14% wider spectrum of travel distance than the bike sharing
(Austin B-Cycle) [3]. Such high mobility features as well as more
random pick-up/drop-off behaviors also make the prediction more
difficult than conventional dock-based or dockless bike sharing
forecast schemes [10, 23].

On the other hand, such features also lead to an urban contro-
versy regarding safety, sidewalk/lane sharing and parking. In many
pilot studies (like in San Francisco), approaches that demonstrated
a highest level of commitment have been discussed before deploy-
ment in order to address known challenges and concerns, ranging
from public safety and user education to equitable access and col-
laboration with the city and its diverse communities. Based on
feedbacks from city supervisors and citizens at public hearings,
many DES service providers expand or shrink their service areas.

Throughout the pilot program and subsequent deployment, while
DES vehicles are usually provided in pre-determined regions, addi-
tional service regions may be introduced to cater for the expanded
demands. For example, during dynamic reconfiguration, the ser-
vice providers in Austin may likely increase DES vehicles at the
city regions other than the initially licensed ones [2]. Therefore,
we have observed additional deployment regions within Austin,
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leading to an expansion as shown in Fig. 4 (parts of the datasets are
illustrated). Similar deployment expansions have been observed in
Louisville and Minneapolis.

On the other hand, the DES deployment may be restricted to
certain areas of a city. One can thus observe deployment shrinkage
as shown in Fig. 4 (particularly for Louisville and Minneapolis). For
example, according to the Dockless Mobility Program by Austin
Transportation Department, dockless e-scooters are not allowed
within areas like parks, off-street parking lots/garages. The Depart-
ment may dynamically reduce the deployment of DES within a
specific area, resulting in DES mobility alternation. The aforemen-
tioned dynamics in Fig. 4 given deployment reconfiguration, along
with mobility routines in Fig. 3, make it very challenging to predict
the entire reconfigured flow accurately.

Reconfigured deployment regions: Taking Austin as an ex-
ample, we show in Figs. 5, 6 and 7 the geographic pick-up locations
of deployment regions in August, October and December of 2018, re-
spectively. Specifically, we plot the heatmap of pick-ups (in log10(·))
w.r.t. each of these months, where the warmer colors indicate more
and denser e-scooter pick-ups. We further show the statistics of the
reconfigured regions (each region takes 0.2496km2) from July to
December 2018 in Fig. 8. We can observe that the reconfiguration
happens and the deployment regions are expanding or shrinking at
different parts of the city. Clearly, it is very challenging to adaptively
predict the e-scooter flows for dynamic reconfiguration, especially
for those regions without prior deployment knowledge of the DES
flows.

The reconfigured regions, either introduced or removed, may
influence their neighbor regions significantly. We also show in
Figs. 9–12 the mutual influence of the region usage. Specifically,
we show in Figs. 9 and 10 the regions (center locations) to the east
of University of Texas, Austin. The demands at region 0 which
existed before the reconfiguration benefit from the introduction
of other regions, since the expansions attract more neighborhood
users (including the university students). On the other hand, in
Figs. 11 and 12 we have illustrated a negative effect of expansions
on the demands near the metropolitan park. With more options of
pick-up/drop-off locations, we can observe a decrease in demand
at region 0.

We can observe that the introduction of a region during the recon-
figuration may decrease or increase the usage of its neighborhood,
whichmaymake it very challenging to predict DES flows accurately.
To address this difficulty, we need to construct comprehensive net-
work structures regarding the region-to-region correlations, which
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can effectively and efficiently capture the relationship between the
reconfigured regions.

4.2 Analytics on Spatial & Temporal Factors
We analyze the spatial factors related to the DES deployment as
follows.

Distance: We correlate the regions based on their mutual close-
ness. Due to diverse terrains and buildings in urban and metro-
politan areas, the travel distances between the two regions can be
greater than the geographic ones measured along the surface of the
earth. We show parts of the urban road networks (blue lines: road
segments; green polygons: buildings) in downtown areas of Austin,
Louisville and Minneapolis in Figs. 13, 14 and 15, respectively.

To reflect the terrain characteristics, we define the shortest path
distance (unit: km) between regions i and j as sp(ri , rj ). Based on
the street centerline obtained from the open data portal of the local
governments [5–7], we can obtain the distance between two city
regions based on the shortest paths on the map. We aggregate the
lengths of the road segments along the shortest paths between the
centers of the two regions, and form the corresponding distance
between them.

We first show the correlations between regions versus the dis-
tances. Taking Austin and Louisville as two examples, we show in
Fig. 19 the usage correlations of regions vs. their mutual shortest
path distances. While more distant regions generally have lower
correlations, we can still observe some high correlated regions due
to similar commute or entertainment purposes there.

POI factors: The functionality of city regions affects the DES
reconfiguration. To reflect this, we have collected the points-of-
interest (POIs) information from the Open Street Map (OSM). Each
POI is associated with specific attributes: name, addresses, GPS
coordinate and the corresponding category. We have collected the
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Figure 16: POI distributions in
Austin, TX.
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Figure 17: POI distributions in
Louisville, KY.
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Figure 18: POIs in Minneapolis, MN.
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Figure 19: Usage correlations vs. distances: (a) Austin; (b) Louisville.

following POI categories: bank, bar, bike parking, cafe, car rental,
cinema, clinic, fast food, hospital, kindergarten, library, park, phar-
macy, post office, pub, restaurant, school and supermarket.

We take into account the following categories retrieved from
OSM. In total, we have collected 2,072, 1,014 and 2,204 POIs for
Austin, Louisville and Minneapolis, which are, respectively, as il-
lustrated in Figs. 16, 17 and 18. We can observe the variations of
POI types and location distributions across the three cities. We also
show in Figs. 20, 21 and 22 the POI similarity matrices for all the
regions w.r.t. each of the three cities.

Temporal & external factors: Recall that Fig. 3 shows the tem-
poral dynamics of DES pick-ups and drops-offs over the time (one
week) . Clearly, the DES flows are shown to experience burst during
morning and late afternoon rush hours, mainly because many DES
users ride the dockless e-scooters for commute. On the other hand,
we further consider the effect of weather conditions upon the DES
deployment. E-scooter usage can be influenced significantly by
the weather. For example, the sudden drops in both pick-ups/drop-
offs on Friday in Fig. 3(b) can be the result of consecutive rainy
conditions illustrated in Fig. 23. In fact, the service providers and
city planners may suspend services during tough weather (say,
the dockless mobility service may be suspended temporarily or
throughout the remainder of the program during unsafe winter
riding conditions in Minneapolis). Therefore, we further take into
account the time (including days of week and public holidays) as
well as meteorological factors as external factors within GCScoot
formulation.

5 GCSCOOT: DYNAMIC LEARNING & FLOW
PREDICTION

Based on the above data analytics, we propose the design of GCScoot
in order to accommodate the complexity in DES reconfiguration.
Specifically, we first present the spatial and temporal designs in
Sec. 5.1. We then provide the graph capsule designs in Sec. 5.2,
followed by the architecture of STGCapNet in Sec. 5.3.

5.1 Spatial and Temporal Designs
We present the spatial and temporal designs in GCScoot as follows.

Distance: Since the regions closer in the geographic space are
more likely to be correlated, we form the spatial correlations which
account for mutual distances. Specifically, we have the spatial dis-
tance correlations between regions i and j in terms of shortest path
distance as

AD (i, j) ,
1

1 + sp(ri , rj )
. (1)

POI: To reflect the correlations due to city functionality, we
measure the PoI closeness between the feature vectors Pi and Pj of
the two regions based on the cosine similarity, which is formally
given by

AP (i, j) , cos(Pi , Pj ) =
Pi · Pj

∥Pi ∥ · ∥Pj ∥
. (2)

Each dimension of Pi corresponds to the number of POIs of a
category within region i .

Temporal correlation: Some pairs of regions may have corre-
lated DES flows due to the users’ commute between them. Let T (t )

i
be the set of DES rides starting from region i at an interval t , i.e.,���T (t )

i

��� = N∑
j=1

���τ (i, j)(t )��� . (3)

To measure the flow correlations, we further define the temporal
correlations of DES flows between regions i and j in the most recent
w time intervals, which is formally given by

A∗
C (i, j) ,

∑t=k
t=k−w

���T (t )
i

��� · ���T (t )
j

���√∑t=k
t=k−w

���T (t )
i

���2 ·√∑t=k
t=k−w

���T (t )
j

���2 . (4)

Connectivity: We have observed that the DES users usually
travel frequently among regions due to their commute routes and
preferences. During rush hours we observe more frequent travels
between work and residential areas, while recreational and resi-
dential areas are more likely connected during weekends. We show
in Fig. 24 the volumes of flows (in log10(·)) from the start regions
(vertical axis) to the destinations (10 selected regions in Austin),
and we can observe more diverse DES flows during weekend due
to the broader riding purposes.

Consideration of Eq. (4) only cannot comprehensively reflect the
directional dependency between regions. So, we further integrate
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Figure 20: Region-to-region POI
similarities, Austin.
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Figure 21: Region-to-region POI
similarities, Louisville.
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Figure 22: Region-to-region POI
similarities, Minneapolis.
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tions for Fig. 3(b) in Louisville.
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Figure 24: Connectivities of regions on Saturday&Monday (Austin).

the connectivity among regions within our formulation. Specifi-
cally, we first define the proportion of e-scooter rides τ (k )(i, j) from
regions ri to rj in the time interval k as

a(k )(i, j) ,
τ (k )(i, j)∑N

l=1,l,i τ
(k )(i, l)

. (5)

Then, we design a vector representing the relative flow proportion,
i.e.,

®u(i, j) ,
[
a(k )(i, j), 1 − a(k )(i, j)

]
, (6)

where a(k )(i, j) increases (and 1 − a(k )(i, j) decreases) if more rides
in i head to j.

Considering the DES network graph G, we adapt the designs of
first-order proximity in the network embedding [33], and design a
connectivity metric h(i, j) for DES rides between regions i and j as

h(i, j) ,
1

1 + exp(−®u(i, j) · ®u(j, i))
, (7)

where the dot product of the two vectors, ®u(i, j) · ®u(j, i), increases
if two regions have more DES rides heading towards each other.

As h(i, j) ∈ (0, 1), we adjust the A∗
C (i, j) by

AC (i, j) = A∗
C (i, j) · h(i, j). (8)

In other words, regions i and j are considered more correlated in
flows if they have more similar flow dynamics and stronger mutual
flow connectivities with each other.

Finally, we have the following adjacency matrix characterizing
the structures of spatio-temporal DES network graph,

A = [AD ,AP ,AC ] . (9)
Reconfiguration masking: Due to dynamic reconfiguration,

the DES deployment regions can be activated (introduced) or deacti-
vated (removed) over the time domain, forming the network graph
G(k). To adaptively reflect this in GCScoot’s formulation, for each
interval k , we apply a mask operationm(k )(·) upon each matrix A⋆

(⋆ ∈ {D, P ,C}), where A′
⋆(i, :) = 0 (A′

⋆(:, i) = 0) if the region i is

deactivated, A′
⋆(i, :) = A⋆(i, :) · 1 (A′

⋆(:, i) = A⋆(:, i) · 1) otherwise.
From the reconfiguration plan of the government or city planners,
we can also obtain the reconfigured regions as V(k+1). Therefore,
we have the resultant masked correlations as

A′
D =m

(k ) (AD ) , A′
P =m

(k ) (AP ) , A′
C =m

(k ) (AC ) . (10)

5.2 Graph Capsule Designs
The core framework of the graph capsule network STGCapNet
within GCScoot includes the following two major components:
1) multi-layer graph convolutions: which consists of multiple graph
convolution layers capturing multi-scale graph features; 2) capsule
routing: which consists of primary and routing capsules to further
derive fine-grained graph features.

Graph convolution: First, we design a multi-scale region fea-
ture extraction with different layers, where the extracted features
are represented in the form of capsules. Specifically, to extract the
features at the city regions, we apply the graph convolution [20].
The formulation framework of the graph convolution is applied
upon each region as well as the peers with trips from/to it, which re-
turns the new representation Z(l+1) ∈ RN×d ′

of the region features
given the inputs Z(l ) ∈ RN×d , i.e.,

Z(l+1) , σ
(
f (A)Z(l )W(l )

)
, (11)

whereW(l ) ∈ Rd×d
′

is a trainable weight matrix as a channel filter.
Since multiple correlation matrices are applied as shown in

Eq. (9), we integrate them within the convolution as follows. Let
W(l )

i j ∈ Rd×d
′

be the trainable weight matrix within the graph con-
volution layer l ∈ {1, . . . ,L}, and σ (·) be the non-linear activation
function (we adopt ReLU in our prototype). We define the channel
filter from all the channels in the l-th layer to the j-th channel in
the (l + 1)-th layer.

Z(l+1)j , σ
©«

∑
A′∈m(k )(A⋆)

∑
i
ÃZliW

(l )
i j
ª®¬ , (12)

where we adopt the symmetric normalized Laplacian f(·) [20], and
have

Ã = f(A′) = D̃− 1
2A′D̃− 1

2 , (13)
and the masked correlation matrices and the degree matrix are

A′ ∈
{
A′
D ,A

′
P ,A

′
C
}
, D̃ii =

∑
j
A′(i, j). (14)

Capsule routing: To handle the complexity of the urban DES
network, we introduce the capsule structures within GCScootwhich
can better capture the spatial and temporal DES flow dynamics.
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The conventional neural network, including convolutional neu-
ral network, usually encodes the structural properties (say, geo-
graphical locations, directions and connections) in a scalar form.
They have been identified to exhibit poor efficiency in preserving
the structural properties of the input object [31]. To address this
problem, the capsule network [31, 34, 37] has been proposed to
extend the scalar into a vector such that the structural informa-
tion can be preserved more efficiently for better computation and
feature extraction. The features within the capsule network are
represented with capsules, which are a structured group of neurons
forming a vector-like representation for the inputs.

Specifically, the region features extracted from all the L graph
convolution layers are concatenated into a tensor of higher dimen-
sion, i.e., [Z1,Z2, . . . ,ZL−1,ZL], and fed to the primary capsules.
Each layer of graph convolution represents the probability that the
entity represented by the capsule is present in the current input. Let
Wc be an N P × NR weight matrix,Wc

i j be the weight of capsules
i in PC and j in RC, and ei j be the coupling coefficients that are
determined through the dynamic routing process.

The dynamic routing process determines the likelihood, de-
noted as bi j , that a preceding capsule i (i ∈ {1, . . . ,N P }) in pri-
mary capsules (PC) should be coupled with a succeeding peer j
(j ∈ {1, . . . ,NR }) in the routing capsules (RC). For the succeeding
RC, the input sj to a capsule j there is formally given by

sj =
∑
i
ei j ûj |i . (15)

where the coupling coefficient ei j is given by a routing softmax
function applied between the primary capsules and the routing
capsules, i.e.,

ei j =
exp(bi j )∑
z exp(biz )

. (16)

and the prediction vector ûj |i represents the link between a capsule
i in PC and j in RC, i.e.,

ûj |i =Wc
i jui . (17)

The resultant vector output, denoted as vj , from the capsule j is
then given by a squashing function to differentiate the long and
short vector inputs, i.e.,

vj =
∥qj ∥2

1 + ∥qj ∥2
·

qj
∥qj ∥
, (18)

via which the long vectors gets mapped towards ones while the
short ones are shrunk towards zeros. The results are further used
to update bi j into b ′i j in the next iteration, i.e.,

b ′i j = bi j + ûj |i · vj . (19)

Through iterations with the Eqs. (15)–(19), the graph capsule net-
work learns the structured features within the input DES networks.

5.3 Architecture Summary
We further summarize the core framework in GCScoot, namely
STGCapNet, as follows.

Graph capsule neural network for DES networks: We sum-
marize the architecture of the multi-layer graph capsule neural
network as in Fig. 25, where dP and dR are the capsule dimensions
in the primary and routing capsules. Multiple graph convolution
neural networks first extract the multi-scale features from the input
spatio-temporal DES network graphs. This way, GCScoot obtains
the initial activation with the spatio-temporal DES network graphs,
and preserve the features of the sub-components of the graphs.
The inputs at the first layer of graph convolution are the spatio-
temporal DES network graphs represented by A and N × 2 flow
matrix F(k ), which serves as Z0. Lower output Z(l−1) is fed to the
upper layer l . The outputs from all the graph convolutions are
further concatenated and fed to the primary capsules. The results
are then processed by the routing capsules, with dynamic routing
with the preceding primary capsules. At the last stage, the fully
connected neural network (we adopt in our prototype two dense
layers with dimensions of CDen

1 and CDen
2 ) processes the outputs

from the routing capsules and map them back to the reconfigured
DES flows Fcap ∈ RN

′×2.
Dense network for external factors: The external factors in-

cluding weather conditions (we adopt 5 typical dimensions in our
prototype, i.e., temperature in Fahrenheit, sunny or not, rainy or
not, cloudy or not, snowy or not, as shown in Fig. 23), day of a
week and hour of a day are concatenated together into a vector
and fed to a multi-layer fully-connected neural network in Fig. 26
in order to integrate external factors related to DES mobility. Two
fully-connected neural networks (with output dimensions of CExt

1
andCExt

2 ) with ReLU activation function between them are adopted
here. This component returns Fden ∈ RN

′×2.
Finally, given the predictions of reconfigured DES flows Fcap

and Fden from the graph capsule neural network as well as the
dense network, GCScoot merges and averages the predicted flows
at target interval k + 1 as in Fig. 2, and returned the final results for
the city planners and service providers. The proposed model can
be dynamically updated over the time given new deployment data.

6 EXPERIMENTAL EVALUATION
We first present the experimental settings in Sec. 6.1 and then the
experimental results in Sec. 6.2.
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6.1 Experimental Settings
We compare GCScoot with the following traditional and state-of-
the-art methods:
• HA and SHA: which estimate the DES flows via the historical
average and seasonal historical average. For example, HA (or
SHA) predicts the flow volume at 10:00am – 11:00am of a Mon-
day by averaging the flows of all Mondays (or all Mondays in
the same season).

• LSTM: which estimates the DES flows based on the long-short-
term memory.

• RNN: which predicts the time series of the DES flows based on
recurrent neural network [29].

• STCNN: which models the DES flows via spatio-temporal con-
volutional neural network [26].

• MGCN: which estimates the flows through multi-graph convo-
lutional neural network [9].

• MTL:which adaptively predicts theDES flows via spatio-temporal
convolutional neural network and meta-learning [12, 39].

• FA+CNN: which adapts the domains of the previous DES flows
with factor analysis and predicts the transformed traffics with
convolutional neural network [23].

• DANN: which predicts and adapts to the dynamic flows via
convolutional neural network with domain adaptation [13, 24].

• MSGN: which adaptively learns and forecasts the traffic flows
with the multi-scale graph neural network [25].
Our experimentation has been done on a desktop server with

Intel i7-8700K 3.70 GHz, 32GB RAM and Nvidia GTX 1080Ti (11 GB
GDDR5). All algorithms are implemented through Python 3.6.5 with
Tensorflow/Keras/PyTorch. As for the quantity offsets of e-scooters
after reconfiguration, we adjust the predictions based on the number
of deployed e-scooters based on the government statistics.

Unless otherwise stated, we use the following parameters by
default. We adopt a temporal discretization interval of 30min as it
is the minimum interval for the meteorological datasets, and set
w = 12 for Eq. (4). In the map preprocessing, we observe that a large
grid eases prediction and computation but lowers the granularity,
while a small grid introduces higher degree of correlations and
computational overheads. To balance these, like the discretization
in [22, 39], we evaluate the grid settings and discretize the maps of
Austin, Louisville and Minneapolis into 32×32, 25×13 and 11×11
grid maps, respectively. The map discretization takes into account
the shape of the city area as well as coverage of DES deployment,
and ensures that the average DES pick-ups/drop-offs of all deploy-
ment grids (with nonzero usage) are at least 100. We adopt L = 5
graph convolution layers. The output dimensions (d ′) for each layer
are set to {100, 600, 100, 600, 100} for Z1 to Z5, and the important
network parameters in STGCapNet are set as

{N P ,dP ,NR ,dR ,CDen
1 ,CDen

2 ,CExt
1 ,C

Ext
2 } = {10, 60, 10, 60, 16, 2, 16, 2}.

We set the default number of dynamic routing in STGCapNet to 4,
and the number of epochs to 200. Adam optimizer is used with a
learning rate of 0.01. For the CNN in STCNN, FA+CNN andMTL, we
set the number of filters to 64. The number of steps and dimensions
of hidden states in LSTM are 6 and 12, respectively.

For our experimental settings, we consider a significant reconfig-
uration happens if 10% of deployment regions in the 7 days onward
have changed (introduced or removed). In total, we have identified

Table 1: Overall performance of all schemes in the three datasets.

Schemes
Austin Louisville Minneapolis

RMSE MAE RMSE MAE RMSE MAE
HA 8.29 7.29 7.92 6.34 6.19 4.88
SHA 8.09 6.11 7.13 5.83 5.69 4.09
LSTM 7.60 5.90 7.05 5.57 4.99 3.52
RNN 6.84 5.28 6.83 5.18 4.63 3.03

STCNN 6.51 4.98 6.22 4.75 4.11 2.90
MGCN 6.14 4.86 4.81 4.45 3.67 2.39
MTL 4.71 4.51 4.43 4.09 3.52 2.28

FA+CNN 4.84 4.45 4.17 4.01 3.45 2.19
DANN 4.64 4.15 3.88 2.69 2.64 1.81
MSGN 4.07 3.87 3.12 2.54 1.76 1.12
GCScoot 2.69 2.05 2.28 1.83 1.38 0.96

Table 2: RMSE regarding the new and existing regions during recon-
figuration periods of the three cities.

Schemes Austin Louisville Minneapolis
New Existing New Existing New Existing

GCScoot 3.88 2.04 3.45 1.88 2.18 1.31
MSGN 5.90 3.87 5.13 2.89 3.43 1.52
DANN 6.11 4.44 6.54 2.73 3.52 2.19
MTL 7.30 4.26 6.11 3.87 5.29 3.45

FA+CNN 7.51 4.82 6.34 3.99 5.18 3.14

Table 3: RMSE on the rush hours & weekends at the three cities.

Schemes Austin Louisville Minneapolis
RH Weekends RH Weekends RH Weekends

GCScoot 3.12 2.63 2.92 3.03 1.81 2.04
MSGN 5.83 5.57 5.26 5.89 3.35 3.74
DANN 5.54 5.32 6.55 6.73 3.66 3.46
MTL 5.21 5.74 6.22 6.83 5.08 4.72

FA+CNN 6.11 5.90 6.18 6.22 5.84 5.14

21 reconfigurations in Austin, 22 in Louisville and 9 in Minneapolis
in the datasets. For each city, we conduct the model sensitivity
studies upon the first 30 days’ samples (first 80% for initial model
training and 20% for validation), and use the rest for overall pre-
diction performance comparison. The training time of GCScoot for
Austin, Louisville andMinneapolis is around 5h, 1.1h and 0.5h based
on our machine. For each dataset, we train GCScoot and other mod-
els with domain adaptation or transfer (MSGN, DANN, FA+CNN
and MTL) based on the samples of 7 days before the reconfiguration
happens, and test the models upon those samples between this re-
configuration and the next. For other schemes without adaptation,
we use the historical records for flow prediction.

We evaluate the performance of all schemes based on the root
mean square error (RMSE),

RMSE =

√√√
1

KN

N∑
i=1

K∑
k=1

(
F(k )i − F̂(k )i

)2
, (20)

and mean absolute error (MAE),

MAE =
1

KN

N∑
i=1

K∑
k=1

���F(k )i − F̂(k)i

��� , (21)

where N and K are the numbers of regions and time intervals, and
F(k)i and F̂(k )i are the actual and predicted DES flows.

6.2 Experimental Results
Presented below are our experimental results.
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Prediction Performance Comparison: We first present in Table 1
the experimental results on the performance on each of the datasets.
Without proper feature adaptation, conventional schemes like HA,
SHA, LSTM, RNN, STCNN and MGCN cannot achieve high pre-
diction accuracy given reconfigured DES deployment. Compared
to FA+CNN, DANN and MSGN, GCScoot achieves higher accuracy
due to its more comprehensive modeling of the DES flows and fine-
grained feature extraction via the graph capsule network. We also
observe the performance variations of the schemes for different
datasets. All the schemes have experienced higher errors in Austin
than other two datasets, due to higher volumes of usage and more
complex DES usage.

By focusing on the new and existing (V ∩ V′) regions after the
reconfigurations, we further show in Table 2 the performance on
the three datasets. Specifically, we show the RMSE of the schemes
GCScoot, MSGN, DANN and FA+CNN. Forecast of dynamic flows
regarding the new regions is overall more challenging due to the ab-
sence of historical data. GCScoot is shown to outperform the other
schemes in predicting the flows from both the new and existing
regions, which validates GCScoot’s high adapatability to the DES
reconfiguration.

By focusing on the morning/evening rush hours (RH: 08:00 am -
10:00am; 05:00 pm - 07:00 pm) and weekends (Saturdays and Sun-
days), we show in Table 3 the performance of GCScoot and the
other four schemes for the three datasets. Note that mobility pre-
diction during rush hours can be challenging due to high and dense
traffic volumes, while diverse travel purposes at the weekends ren-
der the accurate forecast rather difficult. We can see that GCScoot
outperforms the other state-of-the-arts in predicting the flows due
to its higher adaptivity to the DES traffic flows.

Model Sensitivity: After presenting the overall performance upon
the three datasets, we evaluate the model sensitivity of GCScoot to
variations in spatial/temporal/external factors, dynamic routings,
and number of samples (in terms of days) for model training. This
sensitivity has been studied on the first 30 days’ samples (total 1,440
time intervals) for each dataset, and we show the results upon the
validation data (Sec. 6.1).

Taking Austin dataset as an example, we first show in Fig. 27
the performance (RMSE and MAE) of GCScoot with and without
each of the spatial and temporal correlations as well as the exter-
nal/temporal factors. Specifically, we show the RMSEs and MAEs
of GCScoot without distances (w/o dist), flow correlations (w/o
flow corr), POIs (w/o POIs), weather (w/o weather) and fusion with

dense network processing the external factors (w/o ext). By incor-
porating the aforementioned factors, GCScoot is shown to be able
to adaptively predict the reconfigured DES flows.

We further present in Fig. 28 the performance (RMSE) of GCScoot
vs. the number of dynamic routings. More dynamic routings gen-
erally help GCScoot capture more DES flow correlations among
the regions, and hence better accuracy. The improvement via more
routings and iterations begins to converge after introducing more
routings. Therefore, we set the default number of dynamic routings
to 4 in our experimental studies.

Finally, we show in Fig. 29 the performance (RMSEs) of GCScoot,
MSGN, DANN, MTL and FA+CNN given only 1, 3 and 5 days of
the training samples with respect to each of the three datasets.
Fewer training data imposes more challenges upon all the schemes,
which also reflect the common practice when only a few pilot
studies have been conducted before reconfiguration is made. Via
more comprehensive learning based on the graph capsule neural
network, GCScoot still outperforms all the baselines. This way, the
city planners and service providers may be able to conduct proactive
flow studies in the DES initialization.

While our experimental studies focus on spatial, temporal and
external factors including meteorological data, GCScoot is gen-
eral enough to accommodate other factors (including satellite im-
ages [23], local traffic [16] and demographic information) to en-
hance accuracy further.

7 CONCLUSION
In this paper, we have studied the dynamic mobility patterns of
dockless e-scooter sharing (DES) systems due to the deployment
reconfiguration (expansion and shrinkage of the covered regions).
We have proposed a novel system framework called GCScoot for
dynamic distribution prediction of DES reconfiguration. Via data-
driven studies upon the DES data, we have analyzed various spatial
and temporal factors related to the DES flows, including e-scooter
flow dynamics, distances and region connectivities. Taking the
analysis results into account, we have proposed a novel spatio-
temporal graph capsule neural network, which comprehensively
and adaptively forecasts the resultant e-scooter flows given the
altered deployment regions. We have conducted extensive experi-
mental evaluation upon three different e-scooter datasets in three
populous US cities, showing that GCScoot outperforms state-of-the-
arts and is effective and accurate in forecasting e-scooter mobility
and flows after reconfiguration.
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