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Abstract—Indoor localization has attracted considerable at-
tention lately, due to its large commercial and social values in
smart cities. The existing indoor localization approaches mostly
rely on fingerprint techniques, and many of those leverage either
spatially discrete fingerprints or temporally consecutive ones for
localization, which either suffers from large errors due to signal
ambiguities or high time overhead with long sequences.

To achieve high accuracy with low computational cost, we
propose ST-Loc, a deep neural network that extracts features
from multiple representations of a single signal sequence for
localization, where each representation indicates a corresponding
signal structure with underlying feature correlations. Taking
geomagnetism as an example, we infer location features from
two different representations, e.g., spatial and temporal. In
spatial representation, a signal sequence is converted to a signal
heatmap, where each pixel corresponds to a spatial location
and the value indicates fingerprint. Temporal representation,
on the other hand, is a signal sequence with ordered readings,
which provides temporal correlations. Using these different
representations, we employ convolutional and recurrent networks
to extract location features and fuse them to generate more dis-
tinguishing features for localization. We have conducted extensive
experiments in two different trial sites, a narrow office area and
a spacious food plaza. Our experimental results show that ST-
Loc achieves more than 43% average localization error reduction
compared with state-of-the-art competing schemes in both trial
sites.

I. INTRODUCTION

Indoor localization plays a fundamental role in a wide range
of indoor location-based services, e.g., pedestrian localiza-
tion [1], targeted advertising [2], and crowd monitoring [3],
to name a few. The quality of these services, however, largely
relies on the accuracy of underlying positioning algorithms.

To achieve sufficient accuracy, researchers have studied the
indoor localization extensively. Of all techniques, fingerprint-
based ones have attracted much attention. Recent fingerprint-
based techniques are broadly divided into two categories:
spatial based and temporal based approaches [4]. In the first
category, the spatial clues refer to discrete measurements of
input values at different locations (e.g., an image, a Wi-
Fi/Bluetooth fingerprint at a location) [5]. Using these dis-
crete inputs, state-of-the-art approaches compare them with a
database and infer current location with the most similar geo-
tagged fingerprint. These discrete inputs-based approaches are
prone to feature ambiguity and noise, which may lead to large
localization errors.
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Fig. 1: We convert geomagnetic sequences to heatmaps (matri-
ces), where each patch indicates spatially distributed readings.

In order to enhance the localization accuracy, other ap-
proaches begin to study temporal information, which indicates
successive measurements of signal readings at a series of posi-
tions, e.g., a short video clip or a geomagnetic sequence [6],
[7]. These approaches advance previous spatial input-based
ones by considering temporal correlations between consec-
utive inputs. By incorporating these temporal correlations
and continuity constraints, they reduce the impact of noisy
inputs and smooth out erroneous estimations, thus achiev-
ing higher accuracy. However, the computational complexity
usually increases with longer input signal sequences [8]. To
achieve balance between computation cost and accuracy, one
leverages short sequences for localization (e.g., a few frames
of videos and a short geomagnetic sequence), leading to
degraded distinctiveness of location features due a limited
spatial coverage and large localization errors consequently.

To address above challenges, we propose a deep neural net-
work that considers both spatial and temporal representations
of signal sequences for indoor localization, termed ST-Loc.
We convert a single signal sequence to different structures,
e.g., heatmaps (spatial representation) or sequences (tempo-
ral representations). Afterwards, ST-Loc extracts spatial and
temporal location features and fuse them together to achieve
high accuracy. We make the following contributions:

• Converting signal to different representations for lo-
calization: To facilitate distinguishing feature extraction
from signal, we propose a network to convert a single
signal sequence to different representations, e.g., spatial



and temporal ones. Then, based on the dimension of
corresponding representations, we use convolutional and
recurrent networks to extract features and fuse them
together to localize.

• Inferring spatial features via visual approach: Moreover,
we convert a sequence of input into a heatmap. Then, we
employ a modified ResNet [9], applying convolution to
different patches of this heatmap, which correspond to
spatially distributed samples at regular intervals (Fig. 1).
Using convolution operations, we infer spatial location
features from these readings that span a long range.

• Extracting temporal features with recurrent models: We
design hierarchical bidirectional long short-term memory
(LSTM) [10] model to capture the temporal correlations
of ordered signal sequence. With hierarchical structure,
we reduce the average computational complexity of
LSTM units in the model. And we further enhance the
extracted temporal features by a bidirectional LSTM
scheme which considers both past and future contextual
information in the sequence.

As an example, we evaluate the localization accuracy of
the proposed network with geomagnetic sequences. We have
conducted extensive experiments in two different trial sites:
a narrow office area and a spacious food plaza. Evaluation
results show that the proposed network reduces the local-
ization error by more than 43% compared with competing
approaches. In addition to geomagnetism, it is possible to
adapt ST-Loc to other signal sequences, such as Wi-Fi [11],
[12], Bluetooth [13] or visible light [14] sequences, for
localization.

The remainder of the paper is structured as follows. We
review existing approaches that are most similar to ours
in Section II. Then, we elaborate our network design in
Section III. We present illustrative experimental results in
Section IV and conclude in Section V.

II. RELATED WORK

We review related work as follows. Considering spatial
features of localization signals, some researchers evaluate the
measurement of the signals at different locations and use this
pattern to pinpoint users. For example, SemanticSLAM [15]
clusters geomagnetic signals and discovers landmarks to cal-
ibrate current location. Although efficient, these approaches
utilize discrete readings, which lacks dimensionality and still
insufficient for large-scale indoor localization. Recent re-
searches [16], [17] adapt particle filter mechanism to localize
with fingerprints. Furthermore, WAIPO [18] and Magicol [19]
fuse other signals (images, Wi-Fi) to enhance the localization
accuracy. Despite accuracy in specific sites, signal ambiguities
indoors may lead to degraded distinctiveness of features and
large localization errors consequently.

Recently, some researchers propose to leverage sequential
measurements of signals as input (vectorize multiple suc-
cessive observations) to enhance localization accuracy with
temporal correlations. Travi-Navi [20] and NaviLight [21]
both leverage dynamic time warping (DTW) for localization,
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Fig. 2: Overall framework of ST-Loc.

which considers both stretching and squeezing sequences to
align them. However, the comparison of two sequences is
computationally expensive and may lead to high computa-
tional cost. And some approaches employ neural networks
to process sequential inputs for localization [22]. The work
in [23] proposes to use a basic recurrent neural network (RNN)
unit to localize with geomagnetic sequence, while it’s still hard
to extract sufficient features with only a simple basic RNN
especially in wide open space.

III. DESIGN OF ST-LOC

In this section, we present the design of proposed ST-
Loc. We elaborate the overall structure of the network in
Section III-A, followed by the elaboration of spatial and
temporal feature extraction in Section III-B and Section III-C,
respectively.

A. Overall Structure of ST-Loc

The overall framework of proposed ST-Loc is shown in
Fig. 2, which consists of four main modules: 1) Data prepro-
cessing; 2) Multi-scale spatial feature extraction; 3) Hierar-
chical temporal feature extraction and 4) Feature fusion and
location prediction. We overview each module as follows:

1) Data preprocessing. In this part, we first employ empir-
ical mode decomposition (EMD) [24] technique to filter high
frequency noise caused by user motion. And for device het-
erogeneity (different devices may have different calibrations
for magnitude of geomagnetic field intensity), we calculate
the gradient of raw sequence as input instead of using raw
data directly, knowing that the distortions of geomagnetic
sequences collected by different devices at same location are
the same. Through above data preprocessing operations, we
can effectively reduce the impact of external noise.
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Fig. 3: Spatial representation and feature extraction.

2) Multi-scale spatial feature extraction. Noticing the spa-
tial correlations, we consider the geomagnetic sequence from
computer vision angle and propose a multi-scale spatial fea-
ture extraction (MSFE) model. Instead of processing low
dimensional sequence directly, we convert the sequence to
a geomagnetic heatmap, a spatial representation, where each
pixel corresponds to a spatial location and the value denotes
a signal reading. Then, we employ a modified ResNet [9]
to extract multi-scale spatial features from resulted heatmaps.
Details of MSFE will be discussed in Section III-B.

3) Hierarchical temporal feature extraction. Considering
the temporal correlations, we employ start-of-the-art LSTM
model. In practice, it is resource and time consuming to
extracted temporal features from a long input sequence by
feeding the sequence to a LSTM model directly. Therefore,
we design a hierarchical structure, utilizing sequence segment-
ing scheme and multiple-level LSTM to extracted temporal
features. Furthermore, considering both past and future con-
textual information at a timestep, we apply a bidirectional
structure in LSTM (BiLSTM) to further enhance the extracted
temporal features. Details of the hierarchical BiLSTM scheme
are illustrated in Section III-C.

4) Feature fusion and Location prediction. Finally, we
concatenate the extracted spatial and temporal features. Then,
based on the fused spatial-temporal features which are more
comprehensive and distinguishing, we predict user’s location
with a regression unit which is mainly composed of fully con-
nected layers (FC layers) and non-linear mapping functions.

B. Multi-Scale Spatial Feature Extraction

1) Spatial representation of the signal: Considering from
a computer vision angle, we propose a spatial representation
of the geomagnetic sequence by converting the sequence to
a heatmap. Each pixel denotes a single geomagnetic observa-
tion. As shown in Fig. 1, we assume a small window (denoted
by red block) in the geomagnetic heatmap, the rows of which
are actually sub-portions in original geomagnetic sequence at
regular interval and correspond to spatially distributed loca-
tions. Applying convolution to different patch of the heatmap,
we can extract the features that reflect the spatial correlations
of original geomagnetic sequence. As shown in Fig. 3, a
single geomagnetic observation collected by device consists
of values on three axes of X, Y and Z. For a geomagnetic
sequence, we first reshape it to a three-dimensional rectangular
matrix (shape of width*height*3), then normalize all elements

of the rectangular matrix to RGB color space [0, 255] and
convert it to a RGB-channels image, in which the values
(r, g, b) of a pixel in three channels are corresponding to the
values (x, y, z) of a single geomagnetic observation on three
axes.

2) Modified residual neural network: As ResNet has
achieved superior accuracy due to its residual structure in
various vision tasks, e.g., image identification, we leverage
ResNet to extract spatial features from geomagnetic heatmap.
However, original ResNet primarily processes natural im-
age, which is fundamentally different from our geomagnetic
heatmaps in resolution, pixel densities and spatial correlations
of nearby pixels. According to research in [25], to achieve
high accuracy in transfer learning models, it is essential that
having the FC layers in the source domain pre-trained model
when task objective or image properties in the source domain
are far different from those in target domain. Therefore, we
use ResNet (pre-trained on ImageNet [26]) as a basis, then
add FC layers, normalization layer and activate functions after
removing the final classification layer. Finally, we fine-tune
the modified ResNet by training it with our geomagnetic
heatmaps.

The modified ResNet can extract lower level features (sig-
nals in small window) in the previous stage of ResNet while
higher level features (signals in much larger window) in the
latter stage of the network. In summary, ResNet is able to
extract multi-scale spatial features, including low-level and
high-level features which corresponding to short-range and
long-range signal fluctuations, respectively.

More specifically, as presented in Fig. 3, we first remove
final classification layers of original ResNet. In this case,
the network outputs a 512-D spatial feature vector fS . Then
we insert a 2048-D FC layer that maps original 512-D
feature to higher dimensional vector [25], followed by a batch
normalization layer. In the meantime, we insert a rectified
linear unit (ReLU) as activate function. The equations are as
follow:

f̃S = W fS + b, (1)

fSnorm =
γ√

V ar[f̃S ] + ϵ
· f̃S + (β − γE[f̃S ]

V ar[f̃S ] + ϵ
), (2)

FS = v ·ReLU(fSnorm), (3)

where W, b, v, β, γ, ϵ and v are learning parameters, E[·] and
V ar[·] denote mean and standard deviation, respectively.
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Fig. 4: Temporal representation and feature extraction.

Finally, we obtain multi-scale spatial feature FS extracted
from the heatmap with fine-tune modified ResNet.

C. Hierarchical Temporal Feature Extraction

1) Temporal representation of the signal: In many
fingerprint-based approaches, the location prediction is en-
tirely independently based on each fingerprint (a single ob-
servation). However, geomagnetic observations collected by
device are actually a geomagnetic-stream with temporal con-
tinuity, which mean that a lot of feature information can be
extracted by employing temporal dependencies. Intuitively,
we propose to make use of ordered geomagnetic readings
(temporal representation) as input of the network.

2) Hierarchical bidirectional LSTM: To capture these tem-
poral dependencies, we take advantage of the LSTM model in
our network. The LSTM makes an improvement on standard
RNN, overcoming the vanishing gradient problem. And LSTM
applies following operations at each timestep:

ft = σg(Wfxt + Ufht−1 + bf ), (4)
it = σg(Wixt + Uiht−1 + bi), (5)
ot = σg(Woxt + Uoht−1 + bo), (6)
c̃t = σc(Wcxt + Ucht−1 + bc), (7)
ct = ft ◦ ct−1 + it ◦ c̃t, (8)
ht = ot ◦ σh(ct), (9)
yt = σo(Wyht + by), (10)

where xt and ht denote the input and hidden state at time t.
W,U and b are the learnable parameters, σ is the non-linear
activation function. And f, i, o denote forget gate, input and
output reset gates respectively, and c is a memory cell state.

Seminar Room Laboratory Dining AreaRestaurant

(a) Office area. (b) Food plaza.

Fig. 5: Floorplans of our test sites.

However, in practice, it is still hard to efficiently correlate
from the first to last input for a long input sequence by feeding
the sequence to a LSTM model directly, which is also resource
and time consuming for a long input sequence. Therefore, we
design a hierarchical LSTM structure, as shown in Fig. 4, we
first segment the geomagnetic sequence with specific scale and
obtain subsequence set s : {s1, s2, ..., sn}. Then we extract the
temporal features of these local subsequences with low-level
LSTM respectively. For a local subsequence si, we obtain
corresponding local temporal feature fi : {y1,y2, ...,ym}
(m is the length of input subsequence si), which will be
taken as input of a high-level LSTM. With this hierarchical
structure, each LSTM unit in the network processes the
shorter subsequence, which reduces the average computational
complexity of the network.

Furthermore, we employ a bidirectional LSTM scheme
to enhance these local temporal features {f1, f2, ..., fn}. As
shown in Fig. 4, BiLSTM takes this ordered feature sequence
as input, making use of both past and future contextual
information for each instance in the sequence. Then we obtain
the enhanced local temporal features {f̃1, f̃2, ..., f̃n}:

f̃i = BiLSTM([hf
i ,h

b
n−i], fi), (11)

where hf and hb represent the forward and backward hidden
states, respectively.

Finally, we use these enhanced local temporal features as
input of a high-level LSTM to extract global temporal feature
FT , then map FT to fixed size for feature fusion.

IV. ILLUSTRATIVE EXPERIMENTAL RESULTS

We present detailed experimental settings and comparison
schemes in Section IV-A. Then we illustrative experimental



results in Section IV-B, followed by the overhead analysis in
Section IV-C.

A. Experimental Settings and Comparison Schemes

1) Dataset and training settings: We conduct experiments
in two typical trial sites, a narrow office area in our uni-
versity and a more spacious food court in a mall (shown
in Fig. 5). The narrow office area covers around 2,800 m2

and the food plaza is more spacious which covers around
3,500 m2. To construct datasets, we develop an Android
application to collect signals including geomagnetic signal
strength and IMU sensor data (Inertial Measurement Unit).
While surveyors walk though the survey path, the application
will record various signals along path, then we get the signal
value sequence corresponding to the path: {v1,v2,v3, ...}
where vi = {mi,ai,gi,oi}, and mi = {mx,my,mz}
indicates geomagnetic signal strength in three axes. ai,gi,oi

denote corresponding acceleration vector, gyroscope angles
and orientation angles respectively. The sampling frequency
of signals is 50 Hz and the length of collected sequence is
500.

For training dataset, we designed dense survey paths (de-
noted by red solid lines in Fig. 5) in public areas of these sites
and we have collected 2,390 signal sequences in the office
area and 1,952 signal sequences in food plaza for training.
For testing dataset, volunteers are asked to walk though some
randomly chosen paths in trial sites, and we collected 770
and 482 signal sequences in two trial sites for evaluating,
respectively.

We train proposed ST-Loc separately with collected geo-
magnetic sequences in each trial site and evaluate its per-
formance with test ones in corresponding site, respectively.
Baseline training parameters in our experiments are shown
in Table I. We choose Pytorch as deep learning framework in
experiments and employ Adam as network’s optimizer and the
loss function is MSELoss. For biases and weights in each layer
of the network, we initialize them with a standard Gaussian
distribution. All experiments are performed on Ubuntu 16.04
server with two Nvidia 1080ti GPU cards, an Intel i7-6700
CPU and 48GB memory.

2) Comparison schemes and evaluating metric: We com-
pare proposed approach with the following state-of-the-art
geomagnetic localization methods:

• MaLoc [17] utilizes an enhanced particle filter to estimate
user’s position based on fingerprint comparison. Then it
proposes an adaptive sampling algorithm to reduce the
number of particles and increase tracking efficiency.

• Magicol [19] vectorizes collected sequential geomag-
netism based on user’s steps and employs DTW to
compare them with a database to infer current location.
It calibrates user traces with an enhanced bi-directional
particle filter.

• RNN-4 [23]. Jang et al. train a standard RNN network to
predict the position of user, using geomagnetic sequence
as input. In our experiment, we build a 4-layer standard
RNN network as a comparison scheme.

TABLE I: Baseline parameters in experiments

Parameters Food Plaza Office Area

Sequence Length 500 500
Iterations 500 500
Initial Learning Rate 0.0001 0.0001
Mini-batch 125 125

In addition, to evaluate the effectiveness of each network
component, we also compare with following model’s variants:

• ST-Loc-ns: There is no spatial feature extraction module
in the network, by which we can validate the effective-
ness of spatial features.

• ST-Loc-nt: We remove the temporal feature extraction
module to validate the effectiveness of temporal features.

We use the overall mean localization error e as evaluation
metric. Suppose we have N trial cases, where ground truth
location corresponding to each one is xn while estimated
position is x̂n. Then the overall mean localization error e is
determined as:

e =
1

N

N∑
n=1

||x̂n − xn||2, (12)

where || · ||2 is an L2 norm.

B. Experimental Results

We compare the performance of ST-Loc with state-of-
the-art competing approaches. Fig. 6 illustrates the CDF of
localization errors in office area. It demonstrates that proposed
ST-Loc is able to achieve higher accuracy than competing
schemes. This is because ST-Loc considers both spatial and
temporal correlations of inputs and extracts more compre-
hensive, distinguishing spatial-temporal features of original
geomagnetic sequence, thus is able to achieve higher overall
accuracy. Meanwhile, we do not employ noisy motion sensors
of smartphones to localize, thus reducing the impact of
complicated user’s behaviors and random noise on motion
sensors.

Fig. 7 shows the localization error in the food plaza. ST-Loc
is also able to achieve sufficient localization accuracy. How-
ever, Fig. 7 has long tails compared with the results in office
area. This is because the food plaza is more spacious and
has fewer local disturbances, which incurs signal ambiguity.
Thus, the localization error in some cases is larger compared
to constrained office environment.

Fig. 8 presents CDF of location error with different devices
in office area. It shows that ST-Loc achieves high local-
ization accuracy with different devices which have different
calibrations for magnitude of geomagnetic field intensity. It
demonstrates that ST-Loc could effectively handle the device
heterogeneity problem. The reason is that ST-Loc takes gra-
dient sequence as input instead of raw data.

Fig. 9 evaluates the mean localization error with different
layers of ResNet in ST-Loc-nt. It shows that the overall local-
ization error decreases with more layers (or deeper network).
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This is because deeper network is more capable of learning a
robust feature from geomagnetic heatmap. To achieve trade-off
between time, training effort and accuracy, we use ResNet-34
in our experiment.

Fig. 10 illustrates the localization accuracy with number
of geomagnetic readings. It shows that ST-Loc is able to
achieve higher accuracy with more readings. This is because
more readings cover longer path with more local unique
disturbances. Thus the neural network is able to learn more
location clues from input. As the number of samples is
larger than 500, the decrease slows down. This is because we
have sufficient information with 500 samples. However, more
samples mean that it takes more time to collect and calculate.
To achieve trade-off between localization accuracy and system
response time, we use the ordered past 500 readings as input.

Fig. 11 shows the changes of localization error during
training process with different mini-batch sizes. It shows that
the error decreases quickly in the first 100 epochs. Then the
decrease slows down. Finally it converges after 500 epochs.
Meanwhile, with small mini-batch size, ST-Loc runs more iter-
ations in each epoch. Therefore, it learns to adapt our training
data through more forward and backward propagations, thus
achieving smaller localization error in initial epochs but with
more fluctuations during training. However, with larger mini-
batch size, the number of iterations is fewer which means
fewer propagations, leading to larger localization error in
initial epochs but with fewer fluctuations. In our experiment,
we train our network with 500 epochs and set mini-batch size
to 125, thus achieving trade-off.

C. System Overhead

The ST-Loc works in client-server mode. In our experiment,
the client collects and sends 50 signal samples (less than
2KB) to server every second, and the server sends back
localization results after analyzing the signals. The average
network transmission time is less than 0.0033s via a 100Mbps
Wi-Fi router, and we evaluate the average responding time
of ST-Loc and competing schemes for location predicting
or calculating with more than 1000 test cases. As shown in
Table II, ST-Loc outperforms competing schemes and ST-Loc
is able to achieve real-time service with only 0.038s average
responding time.

TABLE II: The average responding time for localization.

Approach ST-Loc RNN-4 MaLoc Magicol

Responding time (s) 0.038 0.061 0.238 1.791

For energy consumption, we recorded the measurements of
system power consumption, where all computations happened
on the experiment device. The current version of our client
application has not yet been optimized well for energy effi-
ciency. After the simulation localization around 30 minutes,
we notice 6% drop in the battery life of our test phone.
The total energy consumption of the client is 243 mAh,
due to high sampling frequency. We can reduce the energy
consumption by reducing the sampling frequency of signal
when localization info sufficiently meet actual needs.



V. CONCLUSION

Indoor localization with either spatial or temporal clues
are prone to signal ambiguities or high time overhead, which
hinders its wide deployment. To address above, we propose to
convert a single signal sequence to different representations,
and then extract features from each representation to form
distinctive location features. More specifically, we convert
sequential signal inputs to a heatmap, where we use con-
volutional operations to find spatial correlations of inputs.
In the meantime, we use hierarchical bidirectional LSTM to
extract temporal correlations with both past and future context.
Then, we fuse these spatial and temporal features together to
enhance the distinctiveness of features. We have conducted
extensive experiments in two different trial sites, the fifth
floor of a narrow office building and the third floor of a
mall. Experimental results in these sites show that our model
reduces localization error by more than 43% compared with
other state-of-the-art competing schemes.
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