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Abstract—Wireless signals have been a strong indicator of
nearby wireless environment, which can be used in a wide range
of applications, including the construction and maintenance of
wireless network in smart cities. However, wireless signals can
change drastically due to moving pedestrians and automatic
power adjustment of Access Points (APs), which renders previous
radiomap inaccurate. To achieve sufficient accuracy, surveyors
have to update the radiomap constantly, which incurs high
maintenance cost in the long run.

To address this, we propose RecNet, a neural network to
reconstruct a fine-grained radiomap with a small number of
new samples. The intuition lies in the visualization of numerical
signal strength values by a heatmap. A high-resolution heatmap
corresponds to a fine-grained radiomap while a low-resolution
one corresponds to a coarse-grained radiomap. Then we reduce
the radiomap reconstruction to the image super-resolution: gen-
erating a high-resolution image from a low-resolution one. Based
on the above, we design and implement the RecNet based on the
image super-resolution neural network. Extensive experiments in
two large test sites demonstrate that RecNet is able to reconstruct
an accurate radiomap with only 50% of fingerprints, and reduces
the signal error by more than 20% compared with a recent
reconstruction algorithm.

I. INTRODUCTION

Smart cities aim at improving lives of citizens and boosting
the economy with state-of-the-art technologies. Of all these,
wireless signals (e.g., Wi-Fi, Bluetooth, Radio Frequency
IDentification) play a fundamental role as they are corner-
stones of many high-layer applications, such as air quality
monitoring, traffic control, anomaly detection, among others.

Wireless Received Signal Strength Indicator (RSSI), which
often varies with positions and surroundings, provides valuable
semantic clues about the wireless environment both indoors
and outdoors. To evaluate this, researchers collect wireless fin-
gerprints (a vector of RSSIs from different APs) and construct
a corresponding radiomap (a set of fingerprints with location
labels). Based on this map, they can determine the wireless
status and provide timely services.

However, the radiomap may be outdated with time due to
environmental changes, such as automatic power adjustment of
APs [1], changing crowds of people and humidity levels [2].
In this case, the radiomap can change drastically, resulting
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in erroneous environmental evaluation. To reduce these draw-
backs, surveyors have to update the radiomap regularly, which
is time-consuming and labor-intensive in large sites. Take
our experiment in a building (covering 4,500 m2) with 475
Reference Points (RPs) for example, it takes us around 90
seconds to collect 20 fingerprints at each RP. Thus the total
time consumption of site survey in this area is around 11.9
hours (475×90÷3600).

To reduce the cost of manual site survey, researchers
have proposed different strategies to reconstruct the radiomap
efficiently (constructing a new radiomap based on a few
new fingerprints) [3], [4]. These strategies can be broadly
divided into the following two categories: propagation model-
based radiomap reconstruction [5], [6] and crowdsourcing-
based fingerprint sampling [7], [8]. Model-based methods
make assumptions of signal distributions, which may not
hold in the constantly changing indoor environment. Some
crowdsourcing-based methods, on the other hand, compare
the recovered trajectory with indoor floor plan. Due to the
noisy motion sensors, the recovered path may drift over time,
resulting in inaccurate location labeling.

In this paper, we also consider given crowdsourced finger-
prints for radiomap reconstruction, but from an image process-
ing angle. The intuition is that as all fingerprints together form
a heatmap, i.e., an image consisting of RSSIs corresponding
to each AP at the site, reconstructing fingerprints can be
considered as an image reconstruction. In other words, we
model a sparse set of fingerprints, as namely a low-resolution
“radiomap”, and augment it into a high-resolution one while
reducing the labor-intensive survey cost. To realize image
super-resolution, we adapt our RSSI reconstruction into a
novel convolutional neural network. Figure 1 illustrates the
reconstruction of AP D4:EE:07:49:76:EE in our test site,
where each pixel represents an RP and the density value is
the normalized sampled RSSI. We compare the granularity of
heatmaps in this figure.

Specifically, we propose a Reconstruction Network, denoted
as RecNet to reconstruct the radiomap efficiently. The key
contributions of RecNet are as follows:
• Effective augmentation of heatmaps. With limited RPs

in our test site, the number of pixels in the generated
heatmaps is small, resulting in a lack of information.
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Fig. 1: Illustration of radio heatmap reconstruction. The aim of this work is
to increase the heatmap granularity with low survey cost.

To address this, we propose an augmentation strategy by
replicating rows and columns of heatmaps. Thus, we are
able to increase the resolution of training heatmaps and
improve the learned model. In addition to that, we also
find that CNN is able to learn a better model with images
in YCbCr space than RGB in our experiment. Therefore,
we convert the fingerprints to YCbCr heatmaps.

• Patch-based learning of signal patterns. As discussed
above, the signal distribution may suffer from local
anomalies indoors, such as walls, ferromagnetic doors,
among others. Instead of learning the holistic propagation
model using the entire input heatmap, we crop it and
train the neural network with cropped small overlapping
patches. To achieve higher accuracy, we take the reso-
lution of original heatmaps into the consideration and
carefully select the patch size. By doing this, we are
able to adapt the model locally and thus achieve higher
accuracy.

• Experimental evaluations. To demonstrate the perfor-
mance of the proposed system, we conduct two exper-
iments in two large sites on our campus. Experimental
results demonstrate that the proposed system is able to
reduce the survey cost by 50% without compromising
the accuracy.

Figure 2 illustrates the overall workflow of the radiomap
reconstruction. For better viewing experiences, we generate
a red bounding box for each low-resolution heatmap. In the
offline stage, we first collect fingerprints at all RPs. Then,
we extract the RSSI of a specific AP at each RP and build
a heatmap. Afterwards, we downsample these heatmaps and
generate a corresponding low-resolution counterpart for each
original heatmap. (Refer to Section III for more details about
heatmap downsampling.) We crop these heatmaps and feed
the high/low-resolution pairs into the neural network. With the
trained model, we are able to upscale the low input heatmap
to a high-resolution one.

We have fully implemented the proposed RecNet and con-
ducted experiments in two large test sites in our campus.
Experimental results demonstrate that the proposed RecNet
is able to reduce the reconstruction error by more than 20%
compared with LDPL method with only a few samples (50%).
Thus RecNet is able to facilitate the deployment of radio
fingerprint-based systems in smart cities.

The remainder of this paper is structured as follows. We
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Fig. 2: The workflow of RecNet.

review the related work in Section II. Then we elaborate the
design of radiomap reconstruction network in Section III. After
presenting the experimental results in Section IV, we conclude
the paper in Section V.

II. RELATED WORK

The pervasiveness of wireless devices enables a wide range
of ubiquitous wireless sensing applications, such as localiza-
tion [9], [10] and public transportation [11], to name a few.
Although these applications have achieved sufficient accuracy,
practical challenges, such as extensive cost of site survey and
maintenance, hinder the deployment of such systems [12].
To address this, researchers have studied different methods to
construct the radiomap effectively. These methods are divided
into two categories: propagation model-based reconstruction
and crowdsourcing-based radiomap reconstruction.

Log Distance Path Loss (LDPL) model [5] is employed to
estimate the received signal strength based on the distance
from the AP to the client. However, the accuracy may be
compromised indoors with many wall partitions. Feng et
al. [6] employ the sparsity of signals to facilitate signal
reconstruction. Their method relies on the assumption that the
signal is sparsely distributed indoors and satisfies the Gaussian
distribution, which is not always feasible due to the dynamic
nature of the indoor environment. Different from them, we do
not rely on the pre-defined holistic signal propagation models.
Instead, we crop patches from training heatmaps and learn
the distribution of signals within these patches. Therefore, our
method is location and environment-independent and achieves
sufficient accuracy in the dynamically changing environment.

Crowdsourcing, on the other hand, provides another direc-
tion for efficient radiomap reconstruction. To reduce the survey
cost, many works [13], [14] propose to employ the motion
to assist the fingerprint collection. AcMu [7] employs the
located static mobile devices to collect real-time fingerprints.
By exploiting the underlying relationship of these fingerprints
and their locations, they are able to update the radiomap
accordingly. Apart from fusing Wi-Fi and motion, MPiLoc [8]
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employs clustering algorithms to detect virtual landmarks
(virtually prominent places with unique Wi-Fi, magnetic field
or motion sensors patterns), such as lifts, stairs and so on
to achieve higher accuracy. In summary, these methods re-
duce the cost of database construction and maintenance by
offloading the survey to ordinary users. Different from them,
the proposed method does not infer the user trajectories with
noisy motion sensors. Thus it achieves higher stability.

Instead of using noisy motion sensors, some other meth-
ods propose to employ semi-supervised learning techniques
with crowdsourced fingerprints, such as expectation maxi-
mization [15] and manifold-based learning [16], [17] in the
radiomap reconstruction. More concretely, they first collect
a small number of fingerprints with accurate location labels.
Based on these labeled fingerprints, Chai et al. [15] and Shi-
mosaka et al. [16] exploit the correlation between fingerprints
in adjacent RPs and update the radiomap. These methods
assume the signal correlation between physically nearby RPs,
which can be easily disturbed by moving objects and walls.
Different from them, our proposed RecNet does not make
assumptions of the signal propagation or correlation between
adjacent RPs. Instead, it crops patches from heatmaps and
learns the patch-wise signal distribution through the state-of-
the-art CNN. Therefore, it is robust in complicated scenarios.
Moreover, it is also possible to employ the transfer learning
to map the fingerprints collected by ordinary users to those at
given positions. Thus our method can be easily integrated with
current crowdsourcing-based reconstruction method to achieve
efficient and accurate radiomap reconstruction.

Finally we discuss the single image super-resolution. State-
of-the-art super-resolution CNN (SRCNN) [18] designs a
neural network to learn an end-to-end mapping between
the low-resolution and high-resolution exemplar image pairs.
More recent super-resolution Generative Adversarial Network
(SRGAN) [19] adds more layers to the network, which tends
to generate visually attractive images rather than numerically
accurate ones, which can result in a loss of reconstruction
accuracy. Based on the above consideration, we consider
adapting SRCNN in our task instead more recent neural
networks.

III. NEURAL NETWORK DESIGN

In this section, we elaborate the process of reconstructing a
high-resolution heatmap with a low-resolution one. We present
preliminaries of image super-resolution in Section III-A. Then
in Section III-B, we illustrate the visualization of numerical
RSSI vectors sampled in our test site, followed by the archi-
tecture of RecNet in Section III-C.

A. Preliminaries of Image Super-Resolution

In the field of computer vision, image super-resolution is
the process of recovering a high-resolution image from a
low-resolution one. Previous example-based image SR usually
consists of four main stages. First, the SR methods densely
crop overlapping patches from the high-resolution images.
Second, these methods learn a low-resolution dictionary and
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Fig. 3: An illustration of converting RSSI values to pixel values.
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Fig. 4: The procedure of heatmap preparation.

encode these patches with it. Third, SR methods maps the
low-resolution dictionary to a high-resolution dictionary and
generate high-resolution patches. Lastly, SR jointly considers
these reconstructed patches and recovers the high-resolution
image with them. Interested readers can refer to [19] for more
details.

B. Visualization of Radiomaps

Instead of numerical Wi-Fi fingerprints, conventional CNN
processes RGB images. As a result, we visualize the discrete
fingerprints in a test site and convert them into RGB images.
Detailed visualization is presented as follows.

First we find the minimal and the maximal RSSI values of
these fingerprints, denoted by ψ and ψ̂, respectively. Then we
map the RSSI values in the signal space to density values in
the color space (ranging from 0 to 255). Given a numerical
RSSI value ψ corresponding to an AP, we convert it to the
density value as follows:

i =

⌊
ψ − ψ
ψ̂ − ψ

∗ 255

⌋
. (1)

Based on Equation (1), we are able to convert all RSSI
values to density values. Afterwards, we extract density values
corresponding to the same AP and put them in the correspond-
ing pixel location. Figure 3 illustrates the visualization process.
Suppose we have a fingerprint with three APs sampled at RP
z. First we convert these RSSIs to density values, then we put
them at the corresponding image position in the heatmap. With
fingerprints collected from all RPs, we create a heatmap for
each AP. In some cases where some RPs are not accessible or
some APs are not detected, we set the corresponding density
values to zero.

We first conduct a comprehensive site survey and generate
a high-resolution heatmap. Then, we downsample this high-
resolution heatmap by removing every other column. Please
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Fig. 5: The architecture of RecNet.

note that it is also possible to conduct different downsampling
strategies such as removing every other row. As we focus
on exploiting the SR to radiomap reconstruction, we do not
specifically compare different downsampling methods in this
paper. As SRCNN requires that the high-resolution heatmap
is the same size as the low-resolution one, we duplicate every
column of the low-resolution heatmap (Figure 4). By doing
so, we are able to generate a high and low-resolution heatmap
pair. Then we replicate the density and fill the RGB channel
with the same value to generate an RGB heatmap.

C. Structure of the Neural Network

In this section, we present the structure of RecNet. It is a
3-layer network (Figure 5) adopted from SRCNN [18].

The network has three convolutional layers. With the input
of the low-resolution heatmap K (the corresponding high-
resolution heatmap is denoted as X), the first convolutional
layer contains a 9 × 9 filter. This layer convolves the input
image with it. Mathematically, the convolution operation can
be defined as follows:

Q1 = max(0,W1 ∗K +B1), (2)

where W1 is the filter and B1 is the bias in this operation.
The convolutional operator is denoted as *.

The second convolutional layer has a 1 × 1 filter. As ex-
plained in [18], the second operation is non-linear mapping of
feature vectors generated in the first layer, which is equivalent
to convolving with a 1×1 filter. Similarly, the operation in this
layer is defined as follows:

Q2 = max(0,W2 ∗Q1 +B2), (3)

where W2 and B2 are corresponding filter and bias in this
layer, respectively.

Finally, the third layer has a 5×5 filter. This layer averages
the patches generated in the previous layer and outputs the
high-resolution heatmap, denoted by X ′. The operation in this
layer is defined as follows:

X ′ =W3 ∗Q2 +B3, (4)

where W3 and B3 are corresponding filter and bias in this
layer.

These filters are used in the convolution operations to
process a patch of RSSI values. With larger filters, we are

Fig. 6: The floor plan of SEIT..

able to take more RPs in the vicinity into consideration. The
filter size of the last layer is smaller than that of the first layer
because we put more emphasis on the central part of those
high-resolution patches. However, if the size of a filter is too
large, more faraway RPs are taken into consideration, which
can degrade the accuracy with partitions. Therefore, we need
to set the filter size accordingly to achieve trade-off between
the number of RPs and the nearby obstructions.

Given an ground truth high-resolution heatmap X corre-
sponding to the input heatmap K and the reconstructed high-
resolution heatmap X ′, we define the loss function using the
mean squared error (MSE):

L = ‖X −X ′‖2. (5)

After preprocessing, we feed the high and low-resolution
heatmap pairs into the RecNet and conduct the training. Please
refer to Section IV for more details about the parameters of
the network and our training configurations.

IV. EXPERIMENTAL RESULTS

We first discuss the experimental settings of the RecNet in
Section IV-A. Then we present our dataset in Section IV-B,
followed by the evaluations of reconstruction accuracy (Sec-
tion IV-C) and localization results using reconstructed ra-
diomap (Section IV-D).

A. Experimental Settings and Comparison Schemes

We evaluate our RecNet in the School of Electronics and
Information (SEIT) and School of Super Computing (SC) in
our campus. Figure 6 illustrates the test area (covering around
3,000 m2) in the first floor of SEIT while Figure 7 illustrates
the floor plan (covering around 2,800 m2) in the fifth floor of
SC. The configuration of SC differs from SEIT significantly.
SEIT has large open space, while SC has many partitions with
long narrow corridors.

The number of RPs in SEIT is 475 (1.6m grid size) while
that in SC is 560 (1.2m grid size). In the course of the site
survey, we collect 20 samples at each RP and store them along
with their locations in a database. We generate the heatmaps
of SEIT on June 18 , 2017 and train the proposed RecNet for
SEIT with these heatmaps. As for SC, we train our model with
data collected on August 9, 2017. To test the reconstruction
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Fig. 7: The floor plan of SC.

accuracy, we conduct another site survey with the same grid
size on July 22, 2017 in SEIT and September 10, 2017 in SC.

In our experiment, we evaluate the reconstruction accuracy
using the following metric: the differences between recovered
RSSI values and the ground truth ones. More specifically, we
define the metrics as follows. Suppose we have M APs and
N RPs in our test site, the differences between the recovered
RSSI values and the ground truth ones are defined as follows:

M∑
m=1

N∑
n=1

|φmn − φ̂mn|, (6)

where φmn denotes the reconstructed RSSI value of AP m
(1 ≤ m ≤ M ) at RP n (1 ≤ n ≤ N ) and φ̂mn denotes the
corresponding ground truth RSSI value.

We also integrate the recovered radiomap with the indoor
localization algorithm [5] to evaluate the reconstruction accu-
racy. The differences between location estimations and ground
truth ones are defined as follows:

N∑
n=1

‖xn − x̂n‖, (7)

where N is the number of test locations, ‖xn − x̂n‖ is the
Euclidean distance between the estimated location xn and the
ground truth x̂n.

We compare RecNet with the LDPL [5], which recovers the
RSSI at an RP based on its distance to an AP. We implement
this scheme and recover the radiomap based on APs with
known locations using this model.

B. Our Dataset

In this section, we detail the generation of our dataset.
After collecting 20 samples at each RP, we extract RSSI
values corresponding to each AP in the whole test site and
convert them to density values. As we cannot conduct site
survey in restricted areas such offices and conference rooms,
we manually set the RSSI values of RPs in these regions to
the lowest RSSI value.

In summary, we generate 20 heatmaps for each AP, 15 of
which are used for network training, 4 are used for validation.
Then we crop overlapping patches from the training heatmaps
with specified sizes (21×21) with step length 2. Finally, we
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Fig. 8: Comparison of RSSIs for one AP (SEIT).

are able to generate around 15,000 patches for each AP,
which is sufficient for our training. In our experiment, we
find that larger resolution of heatmaps often leads to higher
reconstruction accuracy. Therefore, we manually augment the
samples by duplicating columns of heatmaps.

C. Reconstruction Accuracy

In this section, we present the reconstruction accuracy and
the impact of training iterations on it.

Figure 8 illustrates the ground truth RSSI values for AP
D4:EE:07:49:76:EE in our test site. In this figure, blue circles
represent the RSSI values collected on June 18, while the red
pluses represent the values on July 22. Experimental results in
this test site show that the average RSSI differences of these
RPs on different dates is around 5.083dB, which is significant
in this period.

Figure 9 shows the reconstruction accuracy of RecNet. From
this figure, we can learn that the reconstruction accuracy of
RecNet is higher than LDPL. The reasons are as follows.
LDPL models the signal with holistic propagation pattern.
However, it does not work well indoors with many wall
partitions and moving pedestrians. Different from LDPL, Rec-
Net learns the distribution of signals from small overlapping
patches of the original heatmaps. Consequently, it can adjust
to local anomalies, such as wall partitions and occlusions. In
addition to that, RecNet is able to achieve higher accuracy
due to the bidirectional propagation during the training, which
can give feedback on the training results. Based on the above
reasons, RecNet provides better estimation accuracy.

Figure 10 compares the reconstruction accuracy of RecNet
and LDPL in SC. It demonstrates that our RecNet achieves
higher accuracy in this test site. LDPL achieves insufficient
accuracy because the multipath propagation, as well as the
surrounding walls render holistic log distance model inapplica-
ble. In contrast to LDPL, RecNet learns the signal distribution
locally from small patches, thus it is able to achieve higher
accuracy in this complicated test site.

Figure 11 presents the mean RSSI differences with differ-
ent numbers of iterations during training. It shows that the
reconstruction error first decreases. This is because with more
iterations, the trained network is able to fit our training data.
With more than 200,000 iterations, the network may overfit
the training data, thus the test error begins to increase. As a
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Fig. 9: CDF of RSSI difference (SEIT).
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Fig. 10: CDF of RSSI difference (SC).
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Fig. 11: Mean RSSI difference v.s. number of
iterations during training (SEIT).
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iterations during training (SC).
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Fig. 13: CDF of localization error on the first
floor in SEIT.

10
-1 1 2 5 10

Number of Iterations (x100000)

4.5

5

5.5

6

6.5

M
e

a
n

 L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(m

)

LDPL

RecNet
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iterations (SEIT).

result, the number of iterations in the training stage is set to
100,000 in our experiment to achieve trade-off between the
reconstruction accuracy and time consumption of training.

Figure 12 shows the mean RSSI differences with the number
of training iterations in SC. It shows that our RecNet outper-
forms LDPL. Compared with that in SEIT, the reconstruction
accuracy is higher in SC due to the following reason. The
configuration of SC is significantly different from that in SEIT.
For example, the SEIT has much open space in the entrance
hall. In contrast, SC has many long narrow corridors, which
incur serious multipath effect. Thus the line-of-sight-based
LDPL does not achieve sufficient accuracy. Different from
LDPL, RecNet does not make assumptions of the environment
or the holistic signal propagation model. Instead, it learns the
signal pattern with local patches. Thus it is able to deal with
local anomalies and achieve higher accuracy.

D. Comparison of Localization Error

In this section, we evaluate the localization error with the
reconstructed heatmaps.

Figure 13 shows the localization error with reconstructed
radiomaps in SEIT. It shows that CDF of the localization
error reduces by than 20% with our reconstructed map and
achieve comparable accuracy with manual site survey. This
demonstrates that our proposed RecNet is able to adapt to
the environment effectively. Therefore, the localization system
is also able to achieve stable localization accuracy in the
dynamically changing environment.

Figure 14 shows the mean localization error with the
number of iterations during the training stage. It shows that the

localization first decreases with more iterations. It is because
that the RecNet is able to adapt to the training data with more
iterations. Thus the reconstruction accuracy increases at first,
leading to lower localization error. However, when the number
of iteration is sufficiently large (i.e., 200,000), the localization
error begins to increase. This is because the RecNet overfits
the existing training data and achieves lower reconstruction
accuracy with new data.

Table I presents the illustrative reconstructed heatmaps with
100,000 iterations. We can see from these images that the
reconstructed heatmaps are similar to the ground truth ones.
The quantitative mean RSSI difference also demonstrates
that the RecNet is able to achieve sufficient reconstruction
accuracy. Of all the APs, RecNet achieves the lowest accuracy
on AP D4:EE:07:4A:CA:1A (mean RSSI difference 4.44 dB).
This is because AP D4:EE:07:4A:CA:1A is close to walls and
nearby pieces of furniture such as tables, which can incur
stronger multi-path effect, thus increasing the reconstruction
error.

V. CONCLUSION

Ubiquitous wireless signals have been playing an important
role in a wide range of applications. However, due to envi-
ronmental fluctuations, previously collected radiomap often
changes dramatically over a long time, which incurs constant
overhead of maintenance. To address this, we propose RecNet,
a convolutional neural network for efficient and effective ra-
diomap reconstruction. To achieve sufficient accuracy, RecNet
maps the RSSI to pixel values. Based on these converted
values and corresponding locations, it generates heatmaps for
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TABLE I: Illustrative reconstruction of heatmaps in SEIT.

AP 
Mean RSSI 

Difference 
Ground Truth RecNet AP 

Mean RSSI 

Difference 
Ground Truth RecNet 

AP1 3.34dB 

  

AP6 3.14dB 

  

AP2 3.05dB 

  

AP7 3.47dB 

  

AP3 4.44dB 

  

AP8 3.36dB 

  

AP4 3.19dB 

  

AP9 3.39dB 

  

AP5 2.99dB 

  

AP10 2.92dB 

  

each AP. To facilitate effective training, RecNet augments
heatmaps to enhance the training accuracy. It addresses lo-
cal signal fluctuations by employing a patch-wise learning
paradigm. Therefore, it loosens the requirement of indoor
configurations and is more robust to local signal anomalies.
Experimental results in two different test sites demonstrate
that RecNet is able to reconstruct an accurate radiomap after
a month with sufficient accuracy using only 50% fingerprints.
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