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Abstract—Wi-Fi fingerprinting has been extensively studied for indoor localization due to its deployability under pervasive indoor

WLAN. As the signals from access points (APs) may change due to, for example, AP movement or power adjustment, the traditional

approach is to conduct site survey regularly in order to maintain localization accuracy, which is costly and time-consuming. Here, we

study how to accurately locate a target and automatically update fingerprints in the presence of altered AP signals (or simply, “altered

APs”). We propose Localization with Altered APs and Fingerprint Updating (LAAFU) system, employing implicit crowdsourced signals

for fingerprint update and survey reduction. Using novel subset sampling, LAAFU identifies any altered APs and filter them out before a

location decision is made, hence maintaining localization accuracy under altered AP signals. With client locations anywhere in the

region, fingerprint signals can be adaptively and transparently updated using non-parametric Gaussian process regression. We have

conducted extensive experiments in our campus hall, an international airport, and a premium shopping mall. Compared with traditional

weighted nearest neighbors and probabilistic algorithms, results show that LAAFU is robust against altered APs, achieving 20 percent

localization error reduction with the fingerprints adaptive to environmental signal changes.

Index Terms—Indoor localization, fingerprinting, clustering, altered access point, database update, Gaussian process

Ç

1 INTRODUCTION

INDOOR location-based services (LBS) have recently
attracted wide attention. Out of all the techniques, Wi-Fi

fingerprinting emerges as a promising one due to its deploy-
ability [1], [2]. There are typically two phases in fingerprint-
based localization, namely offline site survey and online location
query. In the offline phase, a site survey is conducted to collect
the fingerprints at known physical locations called reference
points (RPs). Each fingerprint is a vector of received signal
strength (RSS) values from Wi-Fi access points (APs). The
RSS values and their associated locations are then stored in a
fingerprint database. In the online phase, a mobile client (tar-
get) measures the RSS values at its location. Upon receiving
the client measurement, the server matches it with the most
similar fingerprints and returns the client location.

The accuracy of fingerprinting localization depends on
how close the fingerprint database matches with the current
signal environment. We show in Fig. 1 how the signal heat
map (spatial distribution of RSSs) from an AP change (power
or AP location alteration) over threemonths (on September 13
and December 22, 2014). It is clear that the heat maps are
markedly different. If such a signal change is not reflected in
the fingerprint database, the localization accuracy would be
adversely affected.

AP signals may change significantly over time (usually in
weeks or months), due to unexpected AP movement, power
adjustment, introduction or removal of wall partitioning,
wearing and so on. In order to keep the fingerprint database

updated, often site survey has to be conducted regularly.
This is labor-intensive and time-consuming.

AP signals evolve over time. Normally, the number of
altered AP signals, or simply altered APs, at a location is
small as compared with the total APs detected (e.g., about 1
to 3 out of around 27 in our experiments). If a majority (say,
more than half) of APs are altered, an extra site survey is
certainly required and would be orthogonal to studies here.
Observe that if the RSS vectors do not contain the altered
APs, their estimations would be close to the true location.
On the other hand, for vectors containing altered AP(s), the
location estimations tend to be dispersed.

To confirm this, we have conducted an experiment on a
given RSS vector (with 27 APs) with two altered APs. After
generating several random vector subsets (i.e., a subset of
detectedAPs forms a new vector), we compute their locations
using a certain fingerprint-based localization algorithm (e.g.,
[1], [3]). Fig. 2 shows the estimated locations for the generated
subsets. Indeed, the RSS subsetswithout any alteredAPs tend
to cluster together around the ground-truth location. On the
other hand, locations estimated from the subsets containing
alteredAPs tend to be dispersed [4]. Based on this, we can iden-
tify the client location if we can find a dense cluster. Further-
more, given the client location, the fingerprint database can
then be updatedwith the RSS vectors at the client users.

Motivated by the above observations, we propose the
Localization with Altered APs and Fingerprint Updating
(LAAFU) systemg. LAFFU achieves both accurate target
localization and automatic fingerprint update in the presence
of altered APs without need of extra site survey. As the RSSs
are automatically collected without explicit user input, also
known as implicit crowdsourcing, LAAFU can transparently
adapt the RP fingerprints of the altered APs. It first identifies
whether there is any altered AP in the RSS vector with a fast
detection algorithm. If no such AP is detected, it simply runs
a fingerprint-based localization algorithm (say, [1], [3], [5],
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[6]) as usual. Otherwise, using subset sampling and a novel
efficient clustering algorithm, LAAFU filters out the altered
APs and finds the client location. Then LAAFU employs the
non-parametric Gaussian process (GP) regression method to
update the RP fingerprints.

In order to make LAAFU fully deployable, we have the
following novel contributions:

� Efficient Fast Detection: As altered APs may not be fre-
quent in target measurements, we propose a simple,
novel and fast detection algorithm, which identifies
the altered APs by partitioning the RSS vector into
multiple subsets and checking the dispersiveness of
these estimations. Our fast detection reduces the unne-
cessary computation and greatly speeds up LAAFU.

� Novel Cluster-based Subset Localization Scheme: We
propose a novel and versatile cluster-based localiza-
tion scheme in order to identify the dense cluster
and locate the target. Our adaptive algorithm
requires no preset cluster number. It employs a novel
weighting scheme to identify dense clusters based on
the signal similarity and the cluster size.

� Adaptive Fingerprint Update Using Gaussian Process:
We propose a novel fingerprint updating scheme
with Gaussian process and crowdsourcing. In con-
trast to the previous work [4] where targets have to
be close to the RPs, our scheme utilizes target loca-
tions anywherein the area, leading to its efficiency
and adaptivity. Given crowdsourced RSSs and their
locations, GP regresses the signals to reflect the cur-
rent environment. In this way, LAAFU is able to
update the entire fingerprint database according to
the signals crowdsourced anywhere from users.

Note that in this paper, though our study is in the context
of Wi-Fi fingerprinting, LAAFU is independent of, and
hence may be used with, any fingerprint signal (such as [8]),
any localization algorithm (e.g., [3], [7], [9]), and any device
calibration scheme (e.g., [6]). For concreteness, we imple-
ment LAAFU with the weighted k-nearest-neighbors
(WKNN) localization algorithm [1], [3]. We conduct exten-
sive experiments on our campus, an international airport
and a leading shopping mall. Our results show that the per-
formance of LAAFU is robust against the AP signal alter-
ation. It achieves around 20 percent lower localization error
compared with the traditional and state-of-the-art finger-
print-based localization techniques (including [2], [3], [10]).

The rest of this paper is organized as follows. We review
the related work in Section 2 and the system overview in
Section 3. Section 4 discusses the fast detection algorithm of
altered APs in LAAFU. Localization with altered APs and
fingerprint database update are discussed in Sections 5

and 6, respectively. We then present illustrative experimen-
tal results in Section 7, and finally conclude in Section 8.

2 RELATED WORK

Fingerprint-based techniques have been widely studied
recently, including deterministic and probabilistic meth-
ods [11]. Deterministic techniques [1], [3], [12] represent the
signal strength of an AP at a location as scalar and use non-
probabilistic approaches to estimate user location. The pio-
neer work, RADAR [1], uses the nearest-neighbor method
to look up user location from a database. On the other hand,
probabilistic techniques [2], [5], [9], [13], [14] calculate the
signal strength distributions in the fingerprint database and
use probabilistic approaches to estimate the user location.
Horus [2] is a typical example using a Bayesian network
model, which is further studied in [13]. The works in [5],
[9], [14] consider KL-divergence to measure the differences
between signal distributions. Further fusing fingerprints
with other signals has been studied to improve localization
accuracy [15]. LAAFU focuses on filtering altered APs
and updating fingerprint database. It is orthogonal to these
localization schemes, and any of such techniques may be
integrated with LAAFU for target location estimation.

Sensor-assisted construction of fingerprint database has
been recently studied in [16], [17]. The SLAM-based
approach utilizes inertial smartphone sensors [18] or robot
sensors [19] to reconstruct the signal map. In [16], a ray-trac-
ing simulation software with a building map is used to sim-
ulate the signal distribution, given the measured signals
from deployed Wi-Fi sniffers. WILL [17] studies combining
the movements of surveyors and Wi-Fi fingerprints to con-
struct a radio map with low survey cost. In contrast to the
above, LAAFU does not require any extra infrastructure
outlay or calibrated motion sensors beyond existing WLAN
to update its fingerprint database, thereby achieving better
scalability and lower cost of deployment.

Crowdsourced fingerprint construction has been studied
recently. Works in [20], [21] utilize explicit user feedback to
build fingerprint database. UnLoc [22] localizes users with
their smartphone inertial sensors and indoor signal land-
marks, which are formed by user-collected signals and their
positions. While these approaches eliminate the need of sur-
veyors, they require intrusive/explicit user participation
and the prior indoor map. The extensive use of inertial sen-
sors also leads to high power consumption. In contrast,
LAAFU does not require any extra sensors and achieves
automatic fingerprint update through implicit user partici-
pation (i.e., no explicit location inputs).

Fig. 1. Fingerprint heat maps (spatial distribution of Wi-Fi RSS in dBm)
on Sep. 13, 2014 (left) and on Dec. 22, 2014 (right) due to AP alteration.

Fig. 2. Locations of subsets with and without altered APs.
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Adapting fingerprints to environmental change has been
studied in [10], [23], [24], [25]. The work in [23] introduces a
modified Bayesian regression algorithm to estimate the RSSs
at RPs based on input data. Nevertheless, it relies on addition-
ally deployed sniffers while LAAFU adapts the database
without any extra network hardware. LEMT [24] adapts its
radio map by learning the mapping relationship between sig-
nals at one location and its neighbors based on a decision tree
method. Transfer learning has also been applied to adapt RSS
measurements [10], [25]. These works assume a certain trend
in signals at neighboring RPs. However, with AP movement
and power adjustment, such an assumption may not hold. In
contrast, LAAFUmakes no assumption about the static signal
trends between the RPs. It is a much more general approach
for fingerprint updating.

Gaussian process is a statistical modeling scheme for ran-
dom signal prediction [26]. In order for GP to estimate the
signals at different locations, previous works require extra
infrastructures such as Wi-Fi sniffers [23] or mobile
robots [27], [28]. Furthermore, they often consider a rela-
tively stable signal map without altered APs [29]. Different
from previous works, LAAFU utilizes GP to transparently
and adaptively update the fingerprint map in the presence
of altered APs, given crowdsourced user feedback.

Indoor localization and fingerprint update with altered
APs has been initially studied under the Chameleon scheme
in [4]. LAAFU is markedly different from and further advan-
ces the work of Chameleon in the following major ways: 1)
Chameleon only updates a fingerprint when the user is a close
distance to an RP. This is inefficient as users are more likely to
be outside this range at an unexplored area between the RPs.
LAAFU can update its fingerprint database for users anywhere
in the region by the Gaussian process. This leads to crowd-
sourcing efficiency, high adaptivity and responsiveness to AP
alteration. 2) Chameleon requires a preset number for its clus-
tering algorithm in RSS subset sampling, which needs to be
tuned at deployment. This is not required by LAAFU, and
hence LAAFU is more portable to different environments. 3)
In identifying a dense cluster, Chameleon only considers the
average signal similarity of a cluster. It may bias to clusters
with fewer location points. LAAFU, on the other hand, finds
the dense cluster by considering both signal similarity and
cluster size. It is hencemore likely to identify where the target
is, and achieves much better localization accuracy. 4)We vali-
date the performance of LAAFU in much wider scenarios,
through extensive experiments in the international airport,
the campus and the leading shoppingmall.

3 SYSTEM OVERVIEW

Fig. 3 shows the framework of LAAFU, which consists of
Fast Detection, Localization with Altered APs, and Fingerprint
Database Update, discussed below:

1) Fast Detection (Section 4): Due to clustering-based sub-
set sampling, indoor localization with altered APs is
costly. LAAFU has a fast detection algorithm to esti-
mate whether there is any altered AP signal or not in
the target RSS vector. If not, LAAFU estimates loca-
tions based on a traditional algorithm. Otherwise, it
moves to the next phase, Localization with Altered APs,
to locate the client. Such a fast initial diagnosis on

alteredAPs greatly speeds up the entire client localiza-
tion processwhen alteredAPsdonot occur frequently.

2) Localization with Altered APs (Section 5): This phase
aims at achieving robust and highly accurate localiza-
tion in the presence of altered APs. LAAFU first ran-
domly generates RSS subsets, and then estimates
their locations. At this stage, the locations for those
subsets without altered APs form a dense cluster, or
otherwise disperse. LAAFU subsequently finds the
dense cluster, whose centroid yields the client’s loca-
tion. In this phase, LAAFU also identifies the altered
APs, whose fingerprints are then adapted in the Fin-
gerprint Database Update phase.

3) Fingerprint Database Update (Section 6): In this part,
LAAFU uses Gaussian Process Regression (GPR) to
adapt the fingerprints of altered APs (obtained in the
previous phase) according to the current environ-
ment. LAAFU estimates the hyperparameters of GP
and generates the regression models. After verifying
the model parameters, LAAFU uses the GP to
update the fingerprints in the database accordingly.

4 FAST DETECTION

Based on our deployment experience, AP alteration hap-
pens over a relatively large time scale (usually by weeks or
months). It is unnecessary to execute the phase of localiza-
tion with altered APs, which has higher computational cost,
and the fingerprint database update phase. For computation
efficiency, we hence present fast detection to detect the pres-
ence of altered APs early in each location query. If no
altered AP is observed, LAAFU runs a traditional finger-
print-based localization algorithm to estimate the target
location and returns it with no further processing. Other-
wise, LAAFU performs the localization with altered APs.

In the following, we present how to conduct fast RSS sub-
set sampling (Section 4.1), localize targets with RSS subsets
(Section 4.2) and detect the AP alteration (Section 4.3).
Table 1 lists the important notations.

4.1 Fast RSS Subset Sampling
In this section, we first present how to generate the subset
samples of the RSS vectors obtained from the target.

We first generalize the RSS subset sampling process. Let
vi be the target-measured RSS (mW) from the AP i, which
owns a unique identifier Media Access Control (MAC)
address Ai. Let P be the total number of APs in the whole
site of interest. The measured RSS vector at the target is

Fig. 3. System overview of LAAFU.
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V ¼ fv1; v2; . . . ; vi; . . . vPg; 1 � i � P: (1)

By definition vi ¼ 0 if the target does not detect the AP i.
The RSS subset vector is generated from the set of detected
APs at the target (client). Let A be the set of AP MAC
addresses detected (i.e., vi 6¼ 0) by the client. Then LAAFU
constructs a subset (indexed by s) of APs in A, i.e.,

As � A; As 6¼ ;: (2)

Corresponding RSS subset vector Vs is defined as

Vs ¼ fv01; v02; . . . ; v0i; . . . v0Pg; (3)

where v0i ¼ vi if Ai 2 As, and otherwise 0.
For efficient fast detection, LAAFU generates only a few

random subset samples of the measured RSS vector.
LAAFU randomly divides the MAC address vector A into
two subsets of even size, denoted as {A1;A2}, such that

jA1j ¼ jA2j ¼ 1

2
jAj; A1 [A2 ¼ A; A1 \A2 ¼ ;: (4)

Then based on the A1 and A2, LAAFU constructs two RSS
subset vectors like Equation (3) from V. Similarly, three
more RSS subsets are generated using the three partitions of
A. With the original full RSS vector, we have a total of six
exclusive subset samples.

4.2 Localization with RSS Subsets
Given above generated RSS subset (vector) samples,
LAAFU implements a weighted k-nearest-neighbor algo-
rithm [1], [3] to compute locations for each RSS subset vec-
tor. Note that LAAFU can be integrated with any other
fingerprint-based localization algorithms such as [9].

We compare the target RSS vector against the finger-
prints at the RPs. Let R be the number of RPs in the survey
site and j be the index of RP. Denote the 2-D coordinate of

RP j as llj ¼ lxj ; l
y
j

� �
. Then the set of RP locations is given by

L ¼ fll1; ll2; . . . ; llj; . . . ; llRg. Similar to V, denote the finger-
print at each RP j as

Fj ¼ vj1; v
j
2; . . . ; v

j
P

n o
: (5)

Then all fingerprint signals in the site are

F ¼ fF1; F2; . . . ; Fj; . . . ; FRg: (6)

We store F and L into the fingerprint database.
WKNN [1], [3] finds the top k nearest RPs whose finger-

prints closely match the target measured one. The compari-
son between RSS vectors Fj and V (or a subset vector Vs) is
based on cosine similarity, i.e.,

cos ðFj;VÞ , Fj �V
jFjjjVj ¼

PP
p¼1 v

j
pvpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

p¼1 vjp
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

p¼1 vp
� �2q : (7)

In locating the target, each of the top k RPs is given a weight
vj ¼ cos ðFj;VÞ. Then WKNN computes the weighted aver-

age of all the k RPs as the target location l̂l, i.e.,

l̂l ¼
Xk
j

vj

v
llj; v ¼

Xk
j

vj: (8)

4.3 Fast Altered AP Detection
Recall that the AP alteration leads to the dispersion in the
locations estimated from RSS subsets (Fig. 2). Given the
above six estimated locations, the Euclidean distance is then
applied to measure the mutual dispersion (distance)
between each pair lli and llj, i.e.,

l̂li � l̂lj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂li � l̂lj

� �
� l̂li � l̂lj

� �Tr
: (9)

Then we average all the mutual euclidean distances. If the
average mutual distance is less than a certain threshold g,
we conclude that AP alteration may not exist. Otherwise,
we conduct further processing as described in the following
sections. Through the fast altered AP detection, LAAFU
reduces unnecessary clustering and update process. Here g
characterizes the sensitivity towards AP signal change, and
is determined by the RSS random noise and AP alteration
(experimentally evaluated in Section 7).

We analyze the complexity of fast detection as follows:

1) Fast RSS Subset Sampling, which needs to randomly
construct RSS subsets of all detected APs in A. Given
P APs, the subset sampling takes OðP Þ.

2) Localization with RSS Subsets, where the WKNN algo-
rithm is applied and takes O

�
RðP þ log kÞ�. As

log k � P , the complexity becomes OðRP Þ.
Threshold checking in Fast Altered AP Detection takes

Oð1Þ. To summarize, the entire fast detection takes OðRP Þ.

5 LOCALIZATION WITH ALTERED APS

In this section, we discuss how to localize a target when
altered APs may exist in the measured RSSs (after the fast
detection). The alteredAPs, if they exist, are then retrieved for
the fingerprint update. Recall that in Section 1, locations esti-
mated from RSS subsets without altered APs tend to form a
dense cluster. Based on this observation, LAAFU groups the
locations estimated from the RSS subsets into clusters, detects
the dense cluster and returns its centroid as the target location.
Other dispersed clustersmay contain the alteredAPs.

We organize this section as follows. We first present how
to conduct subset sampling, location estimation and

TABLE 1
Major Symbols Used in LAAFU

Notation Definition

V RSS vector measured by client
Ai MAC address of AP i

A & As MAC addresses of APs detected by client & their subset
Vs RSS subset vector generated based on As

llj & Fj 2-D location and RSS fingerprint of RP j

g Distance threshold in Fast Detection
P & R Number of APs and RPs in the whole site
M Number of RSS subset vectors generated
Q Number of the nearest RPs in the cluster similarity
b Bandwidth used in penalty term
W Update interval for fingerprint database update
N Training data size for signal regression
k Variance factor in fingerprint database update
� Fingerprint database update weight
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clustering in Section 5.1. Given the location clusters, we dis-
cuss in Section 5.2 how to detect the dense cluster for target
location estimation. Then we describe how to identify an
altered AP in Section 5.3, followed by complexity analysis.

5.1 Random Subset Sampling & Location
Clustering

The random subset sampling here is similar to Section 4.1.
As the exhaustive enumeration for all the subset samples
given the target-measured V is exponential in complexity,
we instead generate a certain number (say, M) of subset
samples, randomly drawn from all possible subsets.
LAAFU then obtains M location estimations with WKNN,
and clusters them into groups.

Specifically, to generate a subset As (1 � s � M) from AP
list A at target, we toss a fair coin for each AP Ai in A, and
put Ai into As if it is head. For accurate localization, we dis-
card As if its size jAsj is too small (say, jAsj � 3). Given the
randomly selected APs As 2 A, LAAFU generates the corre-
sponding RSS subset vector Vs like Equation (3). We repeat
the above subset generation until we obtain totally M RSS
subsets. They are then fed to the WKNN algorithm (Section
4.2) andM location estimations are returned.

Given location dispersion with altered AP(s), we cluster
these M estimated locations to find the target location and
altered APs, which is based on the important observations
in Fig. 2. As the dispersion of estimated locations may be
high and the number of altered APs is unknown, having a
preset cluster number for all time is undesirable. To address
this, we implement the affinity propagation clustering
(APC) [30]. Note that any other suitable clustering algo-
rithm can be applied in LAAFU.

Specifically, APC takes in an M-by-M square matrix of
similarity values between any two estimated locations as
input, where the similarity, denoted as simði; jÞ, is given by
the euclidean distance between the estimated locations
(Equation (9)). During the clustering, two kinds of messages,
responsibilities and availabilities, are exchanged between the
location points [30] for cluster centroid determination:

� Responsibility resði; jÞ, sent from location i to j,
reflects how the proper location j can serve as the cen-
troid for i comparedwith other potential centroids.

� Availability avaði; jÞ, sent from location j to i, repre-
sents how appropriate is to choose location j as the
centroid for i.

Mathmatically, the responsibility resði; jÞ between loca-
tions i and j is given by

resði; jÞ , simði; jÞ �max
8j0 6¼j

�
avaði; j0Þ þ simði; j0Þ	;

where the availabilities avaði; jÞ’s are all initialized to zero in
the first iteration. The availability avaði; jÞ between locations
i and j is defined as

avaði; jÞ ,

min



0; resðj; jÞþ

P
8i0 =2 fi;jg max

�
0; resði0; jÞ	�; if i 6¼ j;P

8i0 6¼i max
�
0; resði0; iÞ	; if i ¼ j:

8>>>>><
>>>>>:

Then resði; jÞ’s and avaði; jÞ’s are iteratively updated in
order to maximize the net similarity [30], denoted as ti, at
each location i, i.e.,

ti , max
j

�
avaði; jÞ þ resði; jÞ	: (10)

If i ¼ j, location i is identified as the centroid of a cluster.
Otherwise, i is assigned to the cluster whose centroid is j. The
iteration endswhen the clustered locations do not change.

5.2 Dense Cluster Detection & Target Localization
Given the clustered locations, LAAFU then identifies the
dense cluster from the others. We find the dense one based
on the following two criteria:

1) High average signal similarity: In the dense cluster, all
the estimated locations are close to the client’s one in
signal space. In other words, we consider that their
corresponding RSS subsets should have high similar-
ity with the target RSS vector. We measure the signal
closeness using the cosine similarity in Equation (7).

Specifically, for each cluster C, LAAFU selects sev-
eral nearest RPs around the centroid of this cluster
using the Euclidean distance (Equation (9)). Let jCj be
the number of location points in cluster C, and Q be
the number of nearest RPs around the centroid. Then
we compute the average of cosine similarities, denoted

as %C, between each subset vectorVC
i inC and eachfin-

gerprint vector FCj among the nearest RPs, i.e.,

%C ,
1

jCjQ
XjCj
i

XQ
j

cos ðVC
i ; F

C
j Þ; (11)

as the similarity of cluster C (0 � %C � 1).
2) Large cluster size: Besides average similarity in signal

space, LAAFU also considers the size of each cluster.
It is mainly because small clusters may still lead to
high average similarity, and they are still likely to
deviate from other locations due to the presence of
altered APs. To address this, we use a Gaussian ker-
nel function to transform the cluster size into a pen-
alty term, ranging from zero to one, i.e.,

nC , exp �ðjCj � jCjminÞ2
2b2

 !
; (12)

where the bandwidth parameter b controls the kernel
sensitivity, and jCjmin represents the size of the
smallest cluster. In other words, nC penalizes more
as the cluster size decreases.

With both rules, the final score of each cluster c is

zC , %C � nC: (13)

The cluster with the highest score is chosen as our target
dense cluster. Its centroid, i.e., the average of 2-D coordi-
nates, is returned as the estimated location.

5.3 Altered AP Identification
Altered APs are likely to be excluded from RSS subsets
within the dense cluster, while the unaltered ones are
likely to be distributed evenly inside. To classify them, for
each AP Ai 2 A in the selected dense cluster, LAAFU
counts the number of RSS subsets which include AP i, as
the frequency of Ai. Fig. 4 shows a frequency counting
result, where the client detects a total of 20 APs and the
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size of the dense cluster is 23. We can observe that the
frequency values of the altered APs (in red circles) are
substantially smaller than those of the unaltered ones. To
identify the markedly low frequency, we consider a two-
class clustering problem in one dimension, which can be
efficiently solved by the Jenks natural breaks optimization
method [31].

Specifically, LAAFU starts the altered AP identification
by sorting the frequency values in an increasing order.
Next, with each frequency value (denoted as f) as a break-
point, LAAFU divides the ordered data into two classes,
denoted as C1 and C2, and then calculates the sum of squared
deviations from the class means (SDCM) as

SDCM ,
X2
i¼1

X
f 2 Ci

f � �fi

� �2
; (14)

where �fi is the mean of frequency values within class Ci.
LAAFU checks all the possible combinations, and finds the
break point with the lowest SDCM, which represents the
smallest frequency variation within the class. Finally,
LAAFU marks the APs in the class of lower frequency as
the altered ones and reports them.

To prevent unaltered APs from being mislabeled, we
accumulate long-term reports in a sliding time window
instead of a single alarm. Then LAAFU records the times of
APs being labeled as altered in the survey site. Given a cer-
tain number of location queries (say, W ) from clients,
LAAFU calculates the alert times for each AP, ranging from
0 to W . Through above one-dimension clustering, these
counts are partitioned into two classes (clusters). Then APs
in the cluster of more reported times are classified as
altered. Note that if a new AP (not tethered by mobile devi-
ces) appears frequently in the long term reports, we can add
it into the fingerprint database to update the nearby RPs.

We briefly analyze the time complexity as follows.

1) RSS Subset Sampling & Location Clustering: LAAFU
takes OðP Þ to sample one RSS subset vector. Gener-
ating M RSS subset vectors takes OðMP Þ. WKNN
localization takes totally OðMRP Þ, as WKNN takes
OðRP Þ for each RSS subset localization. The affinity

propagation clustering takes OðIM2Þ, where I is the
number of iterations [30]. As I is usually small, this
phase takes OðMRP Þ in total.

2) Dense Cluster Detection & Target Localization: For each
cluster c, LAAFU takes OðR logQÞ to find the Q near-
est RPs (say, using a heap of size Q), andOðjCjQPÞ in
score computation. It takesO�MðR logQþQPÞ� in total.

3) Altered AP Identification: Sorting frequency of APs in
the dense cluster takes OðP logP Þ. SDCM calculation
is bounded by OðP Þ as there are OðP Þ potential break
points. Overall it takesOðP 2Þ to detect alteredAPs.

To summarize, dominated by the RSS subset positioning,
the entire Localization with Altered APs phase takes OðMRP Þ.

6 FINGERPRINT DATABASE UPDATE

Given discovered altered APs, we update their signal values
in the database. Crowdsourced RSSs can be anywhere in the
site. Simple replacement in the database is neither efficient
in deployment nor responsive to all fingerprint change. RSS
interpolation (say, with some simple path-loss model) in the
entire site can be efficient. However, it does not reflect the
local patterns of the signals in areas with wall partitions
(say, the tunneling effect in a corridor or the sudden drop
after a concrete wall). To address above concerns, we imple-
ment Gaussian Process for efficient and accurate fingerprint
map (database) update. The advantage of GP is that it pre-
dicts the overall path loss characteristics while reflecting the
local signal distribution anywhere in the site.

The process of our GP regression (recall Fig. 3) is con-
ducted as follows. Given the formulations (discussed in
Section 6.1), LAAFU first estimates the model hyperpara-
meters and feeds them to the GP for parameter verification
(Section 6.2). After the iterative estimations, LAAFU trains
the final GP models and updates the fingerprints of the
altered APs in the database (Section 6.3).

6.1 Gaussian Process Regression

In this section, we discuss the formulation of GP. The stan-
dard GP considering no location input error is first intro-
duced. Beyond the standard one, we present how to adapt
the GP to tolerate input location error. Note that the stan-
dard GP formulation is used in the intermediate step of
parameter estimations (discussed in Section 6.2), while the
adapted one considering input error is applied in the final
prediction and update (discussed in Section 6.3).

Standard GP Formulation. We first present a standard GP
considering no input location error. For each AP to be
updated, we consider a GP model for regression. Let ll
be the input 2-D location crowdsourced by the target (here
we consider regressing the signals floor by floor) and v
be the target-measured RSS value. We denote the latent
transfer function between input location ll and RSS as fðllÞ.
We first start from a standard linear signal regression model
of RSS vwith an additive Gaussian noise " [26], i.e.,

v ¼ fðllÞ þ "; " 	 Nð0; s2
nÞ: (15)

We utilize GP in order to characterize the relationship
between crowdsourced signals and those in the database.
Based on these relationship (represented by covariance),
we can predict the signal map given the crowdsourced
ones. Let ll
 be the 2-D location coordinates (vector) of
an RP, whose fingerprint RSSs are to be updated by GP.
We define the covariance function kðll; ll
Þ, which repre-
sents how two RSSs at input locations ll and the RP ll
 cor-
relate. Then the transfer function between crowdsourcing
location ll and its RSS, fðllÞ, is defined as a Gaussian pro-
cess GP with mean mðllÞ and covariance kðll; ll
Þ with the
location ll
, i.e.,

Fig. 4. Frequency in dense cluster versus index of APs detected by the
client. Red circles correspond to altered APs.
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fðllÞ 	 GP�mðllÞ; kðll; ll
Þ�: (16)

Based on Gaussian process [26], we express the covariance
of RSSs, denoted as covðvi; vjÞ, between any two locations lli
and llj by

covðvi; vjÞ ¼ kðlli; lljÞ þ s2
ndij; (17)

where dij ¼ 1 if i ¼ j, and 0 otherwise. Let N-by-2 matrix L
be the coordinate vector of N locations. Denote the vector of
crowdsourced RSSs corresponding to the input locations L
as v. Let K be the N-by-N covariance matrix over all N
input RSSs and I be the identity matrix of size N . The
covariance matrix among v is given by

covðvÞ ¼ Kþ s2
nI: (18)

LetmðLÞ be a vector of N mean RSSs (mean functions) w.r.t.
all locations in L. GP considers that the input RSS values are
jointly Gaussian, i.e., v 	 N mðLÞ;Kþ s2

nI
� �

.
Given training locations L and RSSs v, we consider the

output of the transfer function (RSS prediction) at location
ll
$
, denoted as f$ jll$ ;L;v, is also Gaussian distributed, i.e.,

f$ jll$ ;L;v 	 Nðm$ ; s2
$ Þ: (19)

Based on Equation (15), the additive noise is predicted by

kðll$ ;LÞT Kþ s2
nI

� 
�1�
v�mðLÞ� [26] (i.e, the weighted sum

of the signal difference based on their covariance), and the
predicted mean RSS m$ is given by

m$ ¼ mðll$ Þ þ kðll$ ;LÞT Kþ s2
nI

� 
�1�
v�mðLÞ�: (20)

The predictive variance of the RSS s2
$ is given by

s2
$ ¼ kðll$ ; ll$ Þ � kðll$ ;LÞT Kþ s2

nI
� 
�1

kðll$ ;LÞ; (21)

where kðll
;LÞ is vector of covariances between ll
 and L.
The mean function mðll$ Þ and the covariance function

kð�; �Þ in Equations (20) and (21) are given as follows. Each
input location llj in the matrix L corresponds to an estimated

location l̂lj (1 � j � N). Each vj in v is the RSS at estimated
location llj from the altered AP. Let llAP be the rough location
of the corresponding AP. For ease of prototyping, we adopt
the log-distance path loss model [32] to calculate mðll$ Þ at
location $ as

mðll$ Þ ¼ aþ b log 10

k ll
$ � llAP k

d0

� �
; (22)

where a is the received power (dBm) at reference distance
d0 ¼ 1 m, b is the path loss exponent. By default, LAAFU
discards the input locations if its RSS value is zero. The
covariance function between input locations is

kðlli; lljÞ ¼ s2
fexp � 1

2d2
ðlli � lljÞT ðlli � lljÞ

� �
; (23)

where d represents length scale w.r.t. the site and s2
f is RSS

variance. Equation (23) represents the sensitivity of signal
change between two different locations.

Adapted GP with Location Input Error. In crowdsourcing
scenarios, the input locations ll’s of clients also contain
uncertainty due to online localization errors. Therefore, we
consider beyond the standard GP in Equation (15) the input
location with error ""ll, i.e.,

ll ¼ ~llþ ""l; ""ll 	 Nð0;SlÞ; (24)

where ~ll is its actual 2-D location. The 2-by-2 matrix Sll is a
diagonal matrix assuming each dimension is independent,
i.e., Sll½i; i� ¼ s2i , where si is the uncertainty of input location
lli, and all the off-diagonal elements of Sll are zero. Then rela-

tionship between RSS v and locations ~ll is

v ¼ f ~llþ ""ll
� �þ "; " 	 Nð0; s2

nÞ: (25)

For ease of calculation, we expand in Taylor form [33] and
approximate the output RSS using noisy input ll,

v ¼ fðllÞ þ ""Tll @ff þ "; (26)

where the 2-D vector @ff ¼ @fðllÞ=@ll is the derivative of mean
function fð�Þ w.r.t. ll (the uncertainty in @ff is not considered
as it takes more computation and provides no significant
difference in the final results [33]). Then the output function
v can be reformulated as

v ¼ fðllÞ þ "v; "v 	 Nð0; s2
n þ @ffTSll@ffÞ: (27)

Correspondingly, Equation (20) is rewritten into [33]

m$ ¼ mðll
Þ þ kðll
;LÞT �
Kþ s2

nIþ diag DfSllD
T
f

n oh i�1�
v�mðLÞ�; (28)

where Df is an N-by-2 matrix of N function values @ff’s (the
derivative of fð�Þ w.r.t. N input 2-D locations ll’s), and
diagf�g represents the diagonal matrix. Similarly, we rewrite
the RSS variance in Equation (21) as

s2
$ ¼ kðll
; ll
Þ�

kðll
;LÞT Kþ s2
nIþ diag DfSllD

T
f

n oh i�1
kðll
;LÞ:

(29)

To summarize, GP captures relationship between the
crowdsourced signals and those to be predicted. Using
the covariance in terms of physical distance and signal
difference, GP predicts the unknown fingerprints. The
nonparametric nature of GP only needs to deal with the
areas that deviate from the path-loss model (say, due to
none-line-of-sight). If crowdsourced signals differ from
the path loss, GP adapts the signal map to them. To
update signals for an AP at the locations ll
’s, we first
calculate its mðll
Þ and kðll
;LÞ using Equations (22)
and (23). Afterwards, we feed the mean and covariance
functions into Equations (28) and (29), and obtain the

signal mean m
 and the variance ðs
Þ2.

6.2 Hyperparameter Estimation & Verification
Parameter Estimation. The hyperparameters in the GP formu-
lation, a;b; llAP ; sn; sf ; d

� �
, should be determined before RSS

prediction. We train these hyperparameters based on the
input fingerprints and their locations as follows:

1) Estimating ha;b; llAP i in Mean Function mðll
Þ: To char-
acterize the spatial distribution of the RSS, we first
regress a, b and llAP in the mean function mðllÞ in the
path loss model. Given crowdsourced RSSs, the
objective function of the regression is to minimize
the total RSS error, which is the sum of the squared
differences between the mean function values and
the input RSSs, i.e.
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E ¼
XN
i

�
mðlliÞ � vi

�2
: (30)

To find the parameters, we minimizeE through a gra-
dient-descent algorithm, Limited-memory BFGS (L-
BFGS) [34]. Let parameter set uu ¼ ha;b; llAP i. L-BFGS
takes in the partial derivatives of the parameters, i.e.,

@E

@uj
¼ 2

XN
i

�
mðlliÞ � vi

� @mðlliÞ
@uj

; (31)

where the partial derivatives are given by

@m

@a
¼ 1;

@m

@b
¼ log 10ðk lli � llAP kÞ;

@m

@llAP
¼ bðllAP � lliÞ

ðllAP � lliÞT ðllAP � lliÞ
:

(32)

By estimating llAP , we can also localize the altered
APs due to movement.

2) Estimating hsn; sf ; di in Covariance: Given the calcu-
lated mean function, we train the remaining hyper-
parameters in the covariance. Let the vector of
differences between measured RSSs v and the mean
function values mðLÞ be z ¼ v�mðLÞ. Denote the
hyperparameters to be estimated as uu ¼ hsn; sf ; di,
and the covariance between RSSs as Kv ¼ Kþ s2

nI.
Given the mean function parameters uu and their loca-
tions L, we formulate the log likelihood of v [26] as

log pðvjL; uuÞ ¼ � 1

2
zTK�1

v z� 1

2
log jKvj �N

2
log 2p:

We need to find optimal hsn; sf ; di in Kv such that
log pðvjL; uuÞ is maximized. We implement L-BFGS
which takes in

@

@uj
log pðvjL; uuÞ ¼ 1

2
zTK�1

v

T @Kv

@uj
K�1

v z

� 1

2
tr K�1

y

@Kv

@uj

� �

¼ 1

2
tr ðK�1

v zÞðK�1
v zÞT �K�1

v

� � @Kv

@uj

� �
:

(33)

For ease of presentation, let the squared Euclidean
distance between location i and j be tij ¼ ðlli � lljÞT
ðlli � lljÞ. The partial derivatives in Equation (33)
become

@Kv½i; j�
@sn

¼ 2sndij;
@Kv½i; j�
@sf

¼ 2sf exp � tij
2l2

� �
;

@Kv½i; j�
@d

¼ tijs
2
f

d3
exp � tij

2d2

� �
;

where dij ¼ 1 if i ¼ j, and otherwise 0.
3) Hyperparameter Estimation with Location Input Errors:In

the adaptedGPwith location input error, Equation (28)
contains Df , the derivative of fð�Þw.r.t. the input loca-
tions. Evaluating Equation (28) is hence complicated.

To address this, we implement a two-step itera-
tion [33] to estimate the hyperparameters,. First, given
training fingerprints v and their L, LAAFU estimates

the hyperparameters of the standard GP assuming no
input location error, as stated above in parts 1) and 2).
Second, it computes each element in Df of the adapted
GPby

@@f ¼ @m

@ll
þ @kðll;LÞT

@ll
K�1

�
v�mðLÞ�: (34)

Then LAAFU updates the covariance matrix as

Kv ¼ Kþ s2
nIþ diagfDfSllD

T
f g: (35)

Then we estimate all hyperparameters by again max-
imizing the log-likelihood in Equation (33). The par-
tial derivative of Kv w.r.t. input error sj is given by

@Kv½i; i�
@sj

¼ 2 Df ½i; j�
� �2

sj; (36)

while all off-diagonal entries in Kv are zero. LAAFU
repeats the second step until their convergence.

Parameter Verification. To overcome overfitting in the GP
signal regression [26], we conduct parameter verification
and find the best parameters in GP. For each altered AP p,
LAAFU randomly picks N RSS samples out of all the W
crowdsourced signals (N < W ) as training inputs to
calculate the preliminary GP parameters. Via the prelimi-
nary GP, LAAFU predicts RSS mpt at each llt of remaining
W �N crowdsourced locations (1 � t � W �N). Then
LAAFU compares mpt with ground truth RSS vpt of that
location llt, and finds the total RSS error for each altered
AP p, i.e.,

ep ,
XW�N

t

jmpt � vptj: (37)

LAAFU repeats the above process several times and finds
the GP hyperparameters with the smallest total RSS error.

To summarize the hyperparameter estimation, we first cal-
culate the mean function parameters by minimizing Equa-
tion (30). Then we train the parameters in GP covariance by
the two-step iterations. During the parameter estimation,
LAAFU verifies the parameters using partial samples and
finds thosewhich canminimize the total RSS error.

6.3 Fingerprint Update & Complexity Analysis
Given the verified GP model, for each altered AP p, LAAFU
calculates at each RP j the predicted signal mean mpj (Equa-
tion (28)) and RSS standard deviation spj (Equation (29)). To
reduce the influence of transient fluctuation, we only
update fingerprints if the predicted RSSs are significantly
different from the old ones.

Specifically, for each AP p, we calculate the mean of its
RSS standard deviation at all RPs in the site, denoted as sp.
We then find the synthesized standard deviation for AP p as

s0
pj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
pj þ s2

p

q
: (38)

If the absolute difference between the predicted mpj and the
previous vpj is greater than the product of a predefined fac-
tor k and the synthesized standard deviation s0

pj, i.e.,

jmpj � vpjj � k � s0
pj; (39)

1904 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 7, JULY 2017

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on May 22,2020 at 20:17:59 UTC from IEEE Xplore.  Restrictions apply. 



then there may be a significant signal change of AP p at RP j.
Then an autoregressive moving average (ARMA) model is
applied to update the fingerprint vpj into v0pj, i.e.,

v0pj ¼ ð1� �Þ � vpj þ � � mpj; 0 � � � 1: (40)

We briefly analyze GP regression and database construc-
tion as follows. In the hyperparameter estimation, we first
find for each altered AP OðNÞ samples for GP model train-
ing. The calculation of RSS difference z, all partial deriva-
tives and predicted m$ ’s at all affected RPs takes OðNÞ.
Each iteration of GP regression takes OðN3Þ, dominated by
the inversion of the covariance matrix (i.e., Kþ s2

nI). The
verification is fast and linear with input signals. To summa-
rize, the Hyperparameter Estimation & Verification for each
altered AP takes OðN3Þ in total.

Given the trained GP model, the GP prediction takes
OðNÞ to predict the RSS and update the fingerprint at an
RP. The total complexity of Gaussian Process Regression and
Fingerprint Update is OðRNÞ at all OðRÞ RPs for each altered
AP. Note that the entire fingerprint update is conducted at a
separate server and does not affect the target localization.

7 EXPERIMENTAL EVALUATION

We present as follows the experimental results at our
HKUST campus, the Hong Kong International Airport
(HKIA) and the Hong Kong Olympian City (HKOC, a lead-
ing shopping mall in Hong Kong).

7.1 Experimental Setup & Metrics
Though power adjustment, AP movement and furniture
introduction are different factors, they all lead to the signal
change in the fingerprint (radio) map, which has a quanti-
tatively similar effect on the localization performance.
Therefore, without much loss of generality, we focus on
power adjustment over the commercial APs. We show in
Fig. 5a the experimental site in the HKUST academic build-
ing (5,400 m2). The black dots in the map are the RPs and
overall 210 RPs are sampled in 3 m grid size.

At each RP, we collect 60 RSS vectors with Lenovo
A680, each quarter of which are collected when we face
north, west, south and east, respectively. We calculate the
mean and variance of RSSs, and observe that 96 percent of
RSS noise (standard deviation) is within 2.5 dB. For testing
purpose, we also collect signals from 900 random locations
different from RPs as targets. Totally 156 APs are detected
after we filter out the APs with little coverage or tethered
by mobile devices. We have no knowledge of AP locations
before the survey as they are deployed by different unco-
ordinated parties. On average 27 APs can be detected at
each target.

Unless otherwise stated, we use the following baseline
parameters in each phase. 1) Fast Detection: We randomly
select two APs and alter their transmission power through
firmware configuration. The signal change factor in AP
alteration is 15 dB. 60 subset vectors are generated each
time. k ¼ 5 for WKNN localization. The distance threshold
g ¼ 6 m for fast detection. 2) Localization with Altered APs:
Q ¼ 5 nearest RPs are used in the cluster similarity
calculation. Bandwidth b ¼ 5 in Equation (12). The sliding
window of location query accumulation W ¼ 200. 3)
Fingerprint Database Update: N ¼ 100 fingerprints are used
for GP model training. Fingerprint verification is con-
ducted for 20 times. We set k ¼ 2 for RSS update decision
in Equation (39), and � ¼ 0:5 for the ARMA model in
Equation (40).

We have also conducted extensive studies in HKIA and
the premium HKOC shopping mall. Figs. 5b and 5c show
the floor plans of HKIA (8,000 m2) and HKOC (25,000 m2).
At the airport and the mall, we survey on 340 and 376 RPs,
respectively. The grid sizes during the site survey in HKIA
and HKOC are both 5 m. The survey, query process and
the baseline parameters are the same as those in the HKUST
trials, as their fingerprint signal noise and survey settings
are similar [35]. In all scenarios, we define user arrival as
a time series of location queries to illustrate the dynamic
signal adaptation.

We compare LAAFU with the following fingerprint-
based localization or signal update algorithms:

1) WKNN [3]: which is given in Section 4.2.
2) Bayesian method [2]: which finds the target location

by maximizing the likelihood at the RPs. The
weighted average of the RP locations with the high-
est probability is returned as the estimation.

3) TLL [10]: which adapts to the temporal Wi-Fi finger-
print variation based on transfer learning. The learn-
ing model captures the principal signal patterns
despite signal fluctuations, and maps the target to
locations [25].

4) Chameleon [4]: which is the preliminary version of
LAAFU. It only considers a fixed number in cluster-
ing subset locations, and simply finds dense clusters
for the target location based on the average signal
similarity [4].

5) Traditional linear signal regression: In signal predic-
tion and fingerprint construction, we compare
our adaptive GP prediction with linear regression
using the log-distance path loss (LDPL) model [36].

Fig. 5. Floor map in HKUST campus (5,400 m2), HKIA airport (8,000 m2), and HKOC shopping mall (25,000 m2).
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The performance metrics are listed as belows:

a) True positive rate (TPR): Denote the number of cor-
rectly classified cases where there are altered APs
as TP , and the number of incorrect decisions that
alteration actually exists as FN . The true positive
rate of fast detection measures the proportion of
true positives which are correctly classified as posi-

tive (altered), i.e., TPR ¼ TP
TPþFN.

b) True negative rate (TNR): Let TN be the number of
negative cases which are correctly predicted as nega-
tive, and FP be the number of positive cases which
are incorrectly classified. The true negative rate
measures the proportion of negatives which are cor-

rectly identified as unaltered, i.e., TNR ¼ TN
TNþFP .

c) Fast detection accuracy (ACC): Among all target sam-
ples, we define PC as the number of positive cases
where altered APs actually exist, and NC as the
number of negative ones where actually no altered
AP exists. The accuracy of fast detection is given by

ACC ¼ TPþTN
PCþNC.

d) Localization error & mean localization error (in meter):
We measure the localization error of a target by the
Euclidean distance between its estimated location and
its ground truth. Then mean localization error is calcu-
lated as the average of all the target estimation errors.

e) Signal prediction error: For signal update accuracy, we
calculate the absolute difference (in dB) between pre-
dicted RSS and ground truth value at every RP.

f) Average mutual Euclidean distance (AMD): We find all
pairwise distances between the locations estimated
with RSS subsets and calculate their mean, i.e.,

2
MðM�1Þ

P
i6¼j kli � ljk, given M estimated locations

from subset vectors and MðM�1Þ
2 pairwise distances. If

this distance is smaller than the predefined threshold
g in fast detection, we conclude that the fingerprint
database has been successfully adapted and updated.

We also use TPR, TNP and ACC to evaluate the finger-
print update decision in Section 6.3. TP (TN) is then the
number of correct decisions where APs are actually altered
and should be updated (unaltered and should not be
updated). FP (FN) is the number of incorrect decisions
where APs are indeed unaltered but unnecessarily updated
(altered but with no update).

Furthermore, to evaluate the quality of the updated data-
base, we conduct WKNN localization on targets with differ-
ent fingerprint databases as follows: (1) Original database
without any updates on RSSs of altered APs; (2) Ground

Truth database, which is constructed by an extra manual
site survey and therefore includes ground-truth RSSs of
altered APs; (3) LAAFU fingerprint database updated by
our proposed GP regression; (4) LDPL fingerprint database
updated by linear regression. From WKNN localization
errors, we can know whether the database has adapted to
the environment using the update scheme.

7.2 Illustrative Experimental Results in HKUST

Wefirst evaluate the Fast Detection phase. Fig. 6a shows TNR,
ACC and TPR versus the distance threshold g in fast detec-
tion (Section 4.3). When g is small, fast detection is sensitive
and almost all the targets are classified as positive. We can
see that TPR is low and TNR is high. It is becausemany unal-
tered cases with only temporal fluctuation are classified as
altered. When we further increase g, fast detection becomes
adaptive to the environment, and hence TPR increases with
more correctly classified unaltered cases. However, if g fur-
ther increases, the detection criterion is insensitive to altered
cases and we observe TNR decreases. To achieve a balance,
we find g ¼ 6 where ACC, TPR and TNR are all optimal.
Note that g can be also empirically set according to the posi-
tioning error of unaltered samples [4].

With g ¼ 6 m, we illustrate in Fig. 6b the average mutual
distance (AMD) versus the number of temporal user arriv-
als. Obviously, before the introduction of altered APs, the
AMD is small, and we observe correct classification as nega-
tive cases (unaltered). After introduction of altered APs, the
AMD rises sharply above the threshold, as altered APs lead
to dispersed location estimations. Based on above observa-
tion, our fast detection can accurately and efficiently detect
the presence of altered AP(s).

We then evaluate Localization with Altered APs phase. Fig. 7
shows the real-time localization errors versus the time series
of location queries, which represent the temporal arrivals of
users. Before introducing altered APs (at index 40), three
algorithms have similar localization errors. Given altered
APs, WKNN and Bayesian algorithms have high errors
because they do not consider AP alteration. Dispersion hap-
pens in their location estimations, which corresponds to the
observation in Fig. 2. Different from these schemes, LAAFU
successfully filters out the altered APs from the RSS vectors
andmaintains higher localization accuracy.

Fig. 8a shows the mean localization errors versus the num-
ber of altered APs. Both WKNN and Bayesian degrade
in localization accuracy due to dispersion in location estima-
tions. TLL assumes a certain trend in signals at neighboring
RPs. With AP movement and power adjustment, such an

Fig. 6. Performance of fast detection versus (a) distance threshold (g);
(b) average mutual distance (AMD). User arrival means a time series of
location queries.

Fig. 7. Localization error before and after AP alteration.
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assumption may not always hold and therefore errors
happen. To the contrary, Chameleon and LAAFU success-
fully filter altered APs and maintains high localization
accuracy. Compared with Chameleon, LAAFU not only
considers the average signal similarity of each subset clus-
ter, but also leverages their size in finding the dense ones.
Unlike Chameleon, LAAFU does not bias to small clusters,
and achieves better localization accuracy. As positioning
accuracy improvement from Chameleon is remarkable, we
focus on LAAFU in the following tests.

Fig. 8b shows localization error CDFs of four different
algorithms given these altered APs. We can see both WKNN
and Bayesian algorithms achieve higher errors without
filtering the altered APs. Assuming static signal relationship,
TLL cannot adapt to AP alteration. By novel RSS subset
clustering, LAAFU reduces the influence of altered APs and
achieves at least 19 percent localization error reduction.

Fig. 8c shows the mean localization errors versus the sig-
nal change factor (from �20 to 20 dB). When AP signals are
not altered, LAAFU has the same localization error like
WKNN. It is because after identifying the APs as unaltered,
LAAFU runs the same WKNN positioning. Given altered
APs, TLL, WKNN and Bayesian methods suffer from the
dispersion of location estimations. When the factor changes
from 0 to �20 dB, the increase of localization error is smaller
compared with those in the reverse direction. It is because
under transmission power reduction, the coverage of
altered APs shrinks and fewer query data detect this AP. In
all cases, LAAFU achieves much better accuracy.

Fig. 9a shows the mean localization error versus the
number of generated subset samples during the positioning
phase with altered APs. We can observe that the more RSS
subsets LAAFU generates, the higher localization accuracy
it can achieve. It is mainly because more RSS subsets have
more location estimations, and provide more information in
detecting the dense cluster. As subset number increases,
improvement converges as the existing subsets are already

sufficient for accurate dense cluster identification and final
localization. At the baseline we use 60 subset vectors.

Fig. 9b shows the mean localization error versus the
bandwidth b in the cluster penalty term (see Equation (12)).
We vary b in the logarithmic scale given 2 and 6 altered
APs. According to Equation (12), when b is small, the pen-
alty term nC is too sensitive to cluster size. When b increases,
nC differs more sharply with cluster size, helping differenti-
ate the clusters. If b further increases, the localization accu-
racy decreases due to a uniform weight assignment with
little differentiation of clusters. It alleviates the improve-
ment brought by cluster size weight %C. On the other hand,
only considering average cluster similarity biases towards
clusters of small size. Influenced by both factors, there exists
a b for the optimal cluster differentiation. We also plot the
mean localization error versus b given six altered APs, and
observe a similar trend under different bandwidth values.
As performance is qualitatively similar with different num-
bers of altered APs, we set b ¼ 5 in our baseline.

Finally, we evaluate the performance of Fingerprint Data-
base Update phase. Fig. 10 shows the average mutual distance
in fast detection versus temporal user arrivals. Update occurs
four times at arrivals of 20, 40, 60 and 80 users, respectively.
Using � ¼ 0:5, the fingerprint is adapted towards the ground
truth, leading to smaller AMD. We observe that LAAFU can
successfully identify altered APs via subset sampling, and
updates their fingerprint database using GP regression.

Fig. 11a shows TNR, ACC and TPR versus the factor k
used in the signal update decision (Section 6.3). It shows
that in general ACC increases first and then decreases,
while TNR (TPR) generally decreases (increases). When k is
small, most of the data, which are identified as negative,
are true negative and lead to high TNR. TPR is small as the
update decision is too sensitive to the temporal signal fluc-
tuation. As k increases, FN decreases while both TPR
and ACC increase. As k further increases, ACC starts
decreasing because LAAFU may also identify positive cases

Fig. 8. Performance comparison of different systems in localization with altered APs.

Fig. 9. Subset-based localization performance. Fig. 10. AMD versus user arrival (location queries) given LAAFU updates.
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as negative, leading to higher FP and lower TNR. In our
deployment we choose the optimal k ¼ 2.

Fig. 11b shows the CDFs of RSS prediction errors using
GP and traditional LDPL. We can observe that GP outper-
forms the LDPL in regressing the signal values of altered
APs, as GP captures the local RSS distribution and preserves
the overall signal propagation characteristics. LDPL simply
regresses the RSSs using path loss model and cannot truly
reflect the ground-truth signals in complex environment.

Fig. 11c shows the CDFs of localization errors using
WKNN upon different fingerprint databases, as stated in Sec-
tion 7.1. We can see that LAAFU achieves remarkable RSS
error reduction (often by 30 percent) compared with LDPL
and successfully adapts the fingerprints closely towards the
ground truth data under AP alteration. It is mainly because
GP regression in LAAFU adaptively learns the local RSS
distributions with the wall partitioning of these altered APs,
while traditional LDPL cannot accurately reflect them.

To further illustrate the fingerprint update process, we
visualize the signal map changes for one of the altered APs
(MAC address: 04-4F-AA-4C-43-18). Fig. 12a shows its origi-
nal signal map before AP alteration. Fig. 12b shows the
ground truth one after the power adjustment (by manual
fingerprint site survey). Fig. 12c shows that after 80 updates,

LAAFU gradually learns the AP alteration and therefore
given 80 user updates the updated signal map greatly
resembles that in Fig. 12b. LAAFU successfully updates the
Wi-Fi fingerprints and leads to better localization accuracy
under altered APs.

We further conduct real-world experiments in our uni-
versity hall (late February, 2016), inviting 4 LBS users to
walk around in the campus and contribute unlabeled data.
The experimental settings are the same as mentioned in Sec-
tion 7.1. After one week, overall 1,600 RSS fingerprints are
fed for fingerprint update. Fig. 13 shows the localization
error using ground truth, LAAFU updates, LDPL updates
and the original database. We observe that LAAFU can
adapt the fingerprint map towards the ground truth, achiev-
ing qualitatively similar performance as in Fig. 11c.

We also show computation time in LAAFU as follows.
Fig. 14 shows the computation time on a PC (Intel i7
3610QM), including online localization time for one location
query (target) on our campus, and GP fingerprint updates.
Subset-based localization is computationally heavier than
WKNN by a factor of the subset number (say, 60 subsets).
Note that the GP-based fingerprint adaptation is conducted
offline (say, database updates late at night) and therefore
LBS users do not experience any latency during service.

Fig. 11. Performance in fingerprint database update of LAAFU.

Fig. 12. Signal map change and update of an altered AP (MAC: 04-4F-AA-4C-43-18).

Fig. 13. CDF of WKNN localization errors with different databases after
one week (HKUST). Fig. 14. Cumulative probability of running time in LAAFU (HKUST).
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7.3 Illustrative Results in HKIA & HKOC
We have conducted similar studies within HKIA and
HKOC over LAAFU, TLL, Bayesian and WKNN. In Figs. 15
and 16, we show the localization error of LAAFU with
altered APs, and the positioning accuracy using updated
fingerprints in HKIA. Similar results are also shown in
Figs. 17 and 18 for HKOC trials. Note the marked resem-
blance (improvement by 20 percent error reduction) to those
in HKUST (Figs. 8b and 11c). As the results are qualitatively

similar, we do not repeat others here. Interested readers
may refer to [35] for further details.

8 CONCLUSION

When AP signals are altered through, for example, AP
movement or power adjustment, conventional fingerprint-
based indoor localization schemes can no longer achieve
satisfactory accuracy. In this paper, we have proposed and
studied Localization with Altered APs and Fingerprint
Updating system, which achieves accurate indoor localiza-
tion and automatic fingerprint database update with possi-
bly altered APs. Using novel subset sampling, LAAFU
efficiently detects the altered APs, filters them out in the
measured RSS vector and then finds the location of the cli-
ent. Given the RSS vectors crowdsourced and the locations
estimated, LAAFU transparently adapts the fingerprint
database to the signal changes by applying the non-
parametric Gaussian process regression method. We have
conducted extensive experiments on LAAFU at our cam-
pus, an international airport and a premium shopping mall.
LAAFU is shown to be robust against altered APs. LAAFU
maintains high localization accuracy and achieves 20 per-
cent positioning error reduction compared with the tradi-
tional schemes. It can also dynamically and automatically
update its fingerprint database without the need for another
time-consuming offline site survey.
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